In

*statistics*and*machine**learning*, the Markov blanket for a node in a graphical model contains all the variables that shield the node from the rest of the network. This means that the Markov blanket of a node is the only knowledge needed to predict the behavior of that node and its children. The term was coined by Judea Pearl in 1988. In a Bayesian network, the values of the parents and children of a node evidently give information about that node. However, its children's parents also have to be included, because they can be used to explain away the node in question. In a Markov random field, the Markov blanket for a node is simply its adjacent (or neighboring) nodes.