A report on ProtonAtom and Alpha particle

The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.
Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)
A physicist observes alpha particles from the decay of a polonium source in a cloud chamber
Ernest Rutherford at the first Solvay Conference, 1911
The Geiger–Marsden experiment:
Left: Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection.
Right: Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus.
Alpha radiation detected in an isopropanol cloud chamber (after injection of an artificial source radon-220).
Proton detected in an isopropanol cloud chamber
The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete.
Example selection of radioactive nuclides with main emitted alpha particle energies plotted against their atomic number. Note that each nuclide has a distinct alpha spectrum.
Protium, the most common isotope of hydrogen, consists of one proton and one electron (it has no neutrons). The term "hydrogen ion" implies that that H-atom has lost its one electron, causing only a proton to remain. Thus, in chemistry, the terms "proton" and "hydrogen ion" (for the protium isotope) are used synonymously
The binding energy needed for a nucleon to escape the nucleus, for various isotopes
Alpha radiation consists of helium-4 nucleus and is readily stopped by a sheet of paper. Beta radiation, consisting of electrons, is halted by an aluminium plate. Gamma radiation is eventually absorbed as it penetrates a dense material. Lead is good at absorbing gamma radiation, due to its density.
A potential well, showing, according to classical mechanics, the minimum energy V(x) needed to reach each position x. Classically, a particle with energy E is constrained to a range of positions between x1 and x2.
An alpha particle is deflected by a magnetic field
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
Dispersing of alpha particles on a thin metal sheet
This diagram shows the half-life (T½) of various isotopes with Z protons and N neutrons.
Energy-loss (Bragg curve) in air for typical alpha particle emitted through radioactive decay.
These electron's energy levels (not to scale) are sufficient for ground states of atoms up to cadmium (5s2 4d10) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.
The trace of a single alpha particle obtained by nuclear physicist Wolfhart Willimczik with his spark chamber specially made for alpha particles.
An example of absorption lines in a spectrum
Graphic illustrating the formation of a Bose–Einstein condensate
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. The surface atoms deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them (See surface reconstruction).
Periodic table showing the origin of each element. Elements from carbon up to sulfur may be made in small stars by the alpha process. Elements beyond iron are made in large stars with slow neutron capture (s-process). Elements heavier than iron may be made in neutron star mergers or supernovae after the r-process.

Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus.

- Alpha particle

One or more protons are present in the nucleus of every atom.

- Proton

The nucleus is made of one or more protons and a number of neutrons.

- Atom

When an atom emits an alpha particle in alpha decay, the atom's mass number decreases by four due to the loss of the four nucleons in the alpha particle.

- Alpha particle

These experiments began after Rutherford had noticed that, when alpha particles were shot into air (mostly nitrogen), his scintillation detectors showed the signatures of typical hydrogen nuclei as a product.

- Proton

Ernest Rutherford and his colleagues Hans Geiger and Ernest Marsden came to have doubts about the Thomson model after they encountered difficulties when they tried to build an instrument to measure the charge-to-mass ratio of alpha particles (these are positively-charged particles emitted by certain radioactive substances such as radium).

- Atom
The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.

5 related topics with Alpha

Overall

Hydrogen atomic orbitals at different energy levels. The more opaque areas are where one is most likely to find an electron at any given time.

Electron

4 links

Subatomic particle whose electric charge is negative one elementary charge.

Subatomic particle whose electric charge is negative one elementary charge.

Hydrogen atomic orbitals at different energy levels. The more opaque areas are where one is most likely to find an electron at any given time.
A beam of electrons deflected in a circle by a magnetic field
J. J. Thomson
Robert Millikan
The Bohr model of the atom, showing states of an electron with energy quantized by the number n. An electron dropping to a lower orbit emits a photon equal to the energy difference between the orbits.
In quantum mechanics, the behavior of an electron in an atom is described by an orbital, which is a probability distribution rather than an orbit. In the figure, the shading indicates the relative probability to "find" the electron, having the energy corresponding to the given quantum numbers, at that point.
Standard Model of elementary particles. The electron (symbol e) is on the left.
Example of an antisymmetric wave function for a quantum state of two identical fermions in a 1-dimensional box. If the particles swap position, the wave function inverts its sign.
A schematic depiction of virtual electron–positron pairs appearing at random near an electron (at lower left)
A particle with charge q (at left) is moving with velocity v through a magnetic field B that is oriented toward the viewer. For an electron, q is negative so it follows a curved trajectory toward the top.
Here, Bremsstrahlung is produced by an electron e deflected by the electric field of an atomic nucleus. The energy change E2 − E1 determines the frequency f of the emitted photon.
Probability densities for the first few hydrogen atom orbitals, seen in cross-section. The energy level of a bound electron determines the orbital it occupies, and the color reflects the probability of finding the electron at a given position.
A lightning discharge consists primarily of a flow of electrons. The electric potential needed for lightning can be generated by a triboelectric effect.
Lorentz factor as a function of velocity. It starts at value 1 and goes to infinity as v approaches c.
Pair production of an electron and positron, caused by the close approach of a photon with an atomic nucleus. The lightning symbol represents an exchange of a virtual photon, thus an electric force acts. The angle between the particles is very small.
An extended air shower generated by an energetic cosmic ray striking the Earth's atmosphere
Aurorae are mostly caused by energetic electrons precipitating into the atmosphere.
During a NASA wind tunnel test, a model of the Space Shuttle is targeted by a beam of electrons, simulating the effect of ionizing gases during re-entry.

The electron's mass is approximately 1836 times smaller than that of the proton.

The Coulomb force interaction between the positive protons within atomic nuclei and the negative electrons without, allows the composition of the two known as atoms.

He designated these particles alpha and beta, on the basis of their ability to penetrate matter.

A model of the atomic nucleus showing it as a compact bundle of the two types of nucleons: protons (red) and neutrons (blue). In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics. In a nucleus that occupies a certain energy level (for example, the ground state), each nucleon can be said to occupy a range of locations.

Atomic nucleus

3 links

A model of the atomic nucleus showing it as a compact bundle of the two types of nucleons: protons (red) and neutrons (blue). In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics. In a nucleus that occupies a certain energy level (for example, the ground state), each nucleon can be said to occupy a range of locations.
A figurative depiction of the helium-4 atom with the electron cloud in shades of gray. In the nucleus, the two protons and two neutrons are depicted in red and blue. This depiction shows the particles as separate, whereas in an actual helium atom, the protons are superimposed in space and most likely found at the very center of the nucleus, and the same is true of the two neutrons. Thus, all four particles are most likely found in exactly the same space, at the central point. Classical images of separate particles fail to model known charge distributions in very small nuclei. A more accurate image is that the spatial distribution of nucleons in a helium nucleus is much closer to the helium electron cloud shown here, although on a far smaller scale, than to the fanciful nucleus image. Both the helium atom and its nucleus are spherically symmetric.

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment.

Ernest Rutherford later devised an experiment with his research partner Hans Geiger and with help of Ernest Marsden, that involved the deflection of alpha particles (helium nuclei) directed at a thin sheet of metal foil.

The quark content of the neutron. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.

Neutron

3 links

The quark content of the neutron. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.
Nuclear fission caused by absorption of a neutron by uranium-235. The heavy nuclide fragments into lighter components and additional neutrons.
Models depicting the nucleus and electron energy levels in hydrogen, helium, lithium, and neon atoms. In reality, the diameter of the nucleus is about 100,000 times smaller than the diameter of the atom.
A schematic of the nucleus of an atom indicating radiation, the emission of a fast electron from the nucleus (the accompanying antineutrino is omitted). In the Rutherford model for the nucleus, red spheres were protons with positive charge and blue spheres were protons tightly bound to an electron with no net charge. 
The inset shows beta decay of a free neutron as it is understood today; an electron and antineutrino are created in this process.
The Feynman diagram for beta decay of a neutron into a proton, electron, and electron antineutrino via an intermediate heavy W boson
The leading-order Feynman diagram for decay of a proton into a neutron, positron, and electron neutrino via an intermediate boson.
Institut Laue–Langevin (ILL) in Grenoble, France – a major neutron research facility.
Cold neutron source providing neutrons at about the temperature of liquid hydrogen
The fusion reaction rate increases rapidly with temperature until it maximizes and then gradually drops off. The D–T rate peaks at a lower temperature (about 70 keV, or 800 million kelvins) and at a higher value than other reactions commonly considered for fusion energy.
Transmutation flow in light water reactor, which is a thermal-spectrum reactor

The neutron is a subatomic particle, symbol or, which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton.

Protons and neutrons constitute the nuclei of atoms.

In 1931, Walther Bothe and Herbert Becker found that if alpha particle radiation from polonium fell on beryllium, boron, or lithium, an unusually penetrating radiation was produced.

Ernest Rutherford

Ernest Rutherford

3 links

New Zealand physicist who came to be known as the father of nuclear physics.

New Zealand physicist who came to be known as the father of nuclear physics.

Ernest Rutherford
Rutherford in 1892, aged 21
Lord Rutherford's grave in Westminster Abbey
Ernest Rutherford at McGill University in 1905
Top: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed. 
Bottom: Observed results: a small portion of the particles were deflected, indicating a small, concentrated charge. Diagram is not to scale; in reality the nucleus is vastly smaller than the electron shell.
A plaque commemorating Rutherford's presence at the University of Manchester
nitrogen plasma
A statue of a young Ernest Rutherford at his memorial in Brightwater, New Zealand.
A Russian postage depicting Scattering diagram
Radioaktive Substanzen und ihre Strahlungen, 1913

In 1911, although he could not prove that it was positive or negative, he theorized that atoms have their charge concentrated in a very small nucleus, and thereby pioneered the Rutherford model of the atom, through his discovery and interpretation of Rutherford scattering by the gold foil experiment of Hans Geiger and Ernest Marsden.

As a result, he discovered the emission of a subatomic particle which, in 1919, he called the "hydrogen atom" but, in 1920, he more accurately named the proton.

Continuing his research in Canada, he coined the terms alpha ray and beta ray in 1899 to describe the two distinct types of radiation.

Hydrogen atom (center) contains a single proton and a single electron. Removal of the electron gives a cation (left), whereas the addition of an electron gives an anion (right). The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only charge-+1 cation that has no electrons, but even cations that (unlike hydrogen) retain one or more electrons are still smaller than the neutral atoms or molecules from which they are derived.

Ion

1 links

Hydrogen atom (center) contains a single proton and a single electron. Removal of the electron gives a cation (left), whereas the addition of an electron gives an anion (right). The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only charge-+1 cation that has no electrons, but even cations that (unlike hydrogen) retain one or more electrons are still smaller than the neutral atoms or molecules from which they are derived.
Schematic of an ion chamber, showing drift of ions. Electrons drift faster than positive ions due to their much smaller mass.
Avalanche effect between two electrodes. The original ionization event liberates one electron, and each subsequent collision liberates a further electron, so two electrons emerge from each collision: the ionizing electron and the liberated electron.
Equivalent notations for an iron atom (Fe) that lost two electrons, referred to as ferrous.
Mixed Roman numerals and charge notations for the uranyl ion. The oxidation state of the metal is shown as superscripted Roman numerals, whereas the charge of the entire complex is shown by the angle symbol together with the magnitude and sign of the net charge.
An electrostatic potential map of the nitrate ion . The 3-dimensional shell represents a single arbitrary isopotential.

An ion is an atom or molecule with a net electrical charge.

The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention.

The ionizing effect of radiation on a gas is extensively used for the detection of radiation such as alpha, beta, gamma, and X-rays.