A report on AmineAmmonia and Dimethylamine

Amide formation
Ball-and-stick model of the diamminesilver(I) cation, [Ag(NH3)2]+
Ball-and-stick model of the tetraamminediaquacopper(II) cation, [Cu(NH3)4(H2O)2](2+)
Jabir ibn Hayyan
This high-pressure reactor was built in 1921 by BASF in Ludwigshafen and was re-erected on the premises of the University of Karlsruhe in Germany.
A train carrying Anhydrous Ammonia.
Liquid ammonia bottle
Household ammonia
Ammoniacal Gas Engine Streetcar in New Orleans drawn by Alfred Waud in 1871.
The X-15 aircraft used ammonia as one component fuel of its rocket engine
Anti-meth sign on tank of anhydrous ammonia, Otley, Iowa. Anhydrous ammonia is a common farm fertilizer that is also a critical ingredient in making methamphetamine. In 2005, Iowa used grant money to give out thousands of locks to prevent criminals from getting into the tanks.
The world's longest ammonia pipeline (roughly 2400 km long), running from the TogliattiAzot plant in Russia to Odessa in Ukraine
Hydrochloric acid sample releasing HCl fumes, which are reacting with ammonia fumes to produce a white smoke of ammonium chloride.
Production trend of ammonia between 1947 and 2007
Main symptoms of hyperammonemia (ammonia reaching toxic concentrations).
Ammonia occurs in the atmospheres of the outer giant planets such as Jupiter (0.026% ammonia), Saturn (0.012% ammonia), and in the atmospheres and ices of Uranus and Neptune.

Amines are formally derivatives of ammonia (NH3), wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group (these may respectively be called alkylamines and arylamines; amines in which both types of substituent are attached to one nitrogen atom may be called alkylarylamines).

- Amine

This secondary amine is a colorless, flammable gas with an ammonia-like odor.

- Dimethylamine

Secondary (2°) amines—Secondary amines have two organic substituents (alkyl, aryl or both) bound to the nitrogen together with one hydrogen. Important representatives include dimethylamine, while an example of an aromatic amine would be diphenylamine.

- Amine

Amines can be formed by the reaction of ammonia with alkyl halides or with alcohols.

- Ammonia

In both cases, dimethylamine and trimethylamine are co-produced.

- Ammonia
Amide formation

2 related topics with Alpha


Daniel Rutherford, discoverer of nitrogen


1 links

Chemical element with the symbol N and atomic number 7.

Chemical element with the symbol N and atomic number 7.

Daniel Rutherford, discoverer of nitrogen
The shapes of the five orbitals occupied in nitrogen. The two colours show the phase or sign of the wave function in each region. From left to right: 1s, 2s (cutaway to show internal structure), 2px, 2py, 2pz.
Table of nuclides (Segrè chart) from carbon to fluorine (including nitrogen). Orange indicates proton emission (nuclides outside the proton drip line); pink for positron emission (inverse beta decay); black for stable nuclides; blue for electron emission (beta decay); and violet for neutron emission (nuclides outside the neutron drip line). Proton number increases going up the vertical axis and neutron number going to the right on the horizontal axis.
Molecular orbital diagram of dinitrogen molecule, N2. There are five bonding orbitals and two antibonding orbitals (marked with an asterisk; orbitals involving the inner 1s electrons not shown), giving a total bond order of three.
Solid nitrogen on the plains of Sputnik Planitia on Pluto next to water ice mountains
Structure of [Ru(NH3)5(N2)]2+ (pentaamine(dinitrogen)ruthenium(II)), the first dinitrogen complex to be discovered
Mesomeric structures of borazine, (–BH–NH–)3
Standard reduction potentials for nitrogen-containing species. Top diagram shows potentials at pH 0; bottom diagram shows potentials at pH 14.
Nitrogen trichloride
Nitrogen dioxide at −196 °C, 0 °C, 23 °C, 35 °C, and 50 °C. converts to colourless dinitrogen tetroxide at low temperatures, and reverts to  at higher temperatures.
Fuming nitric acid contaminated with yellow nitrogen dioxide
Schematic representation of the flow of nitrogen compounds through a land environment
A container vehicle carrying liquid nitrogen.

Many industrially important compounds, such as ammonia, nitric acid, organic nitrates (propellants and explosives), and cyanides, contain nitrogen.

Many organic functional groups involve a carbon–nitrogen bond, such as amides (RCONR2), amines (R3N), imines (RC(=NR)R), imides (RCO)2NR, azides (RN3), azo compounds (RN2R), cyanates and isocyanates (ROCN or RCNO), nitrates (RONO2), nitriles and isonitriles (RCN or RNC), nitrites (RONO), nitro compounds (RNO2), nitroso compounds (RNO), oximes (RCR=NOH), and pyridine derivatives.

Many saltwater fish manufacture large amounts of trimethylamine oxide to protect them from the high osmotic effects of their environment; conversion of this compound to dimethylamine is responsible for the early odour in unfresh saltwater fish.

Fumes from hydrochloric acid and ammonia forming a white cloud of ammonium chloride


1 links

Positively charged polyatomic ion with the chemical formula [NH4]+.

Positively charged polyatomic ion with the chemical formula [NH4]+.

Fumes from hydrochloric acid and ammonia forming a white cloud of ammonium chloride
Formation of ammonium

It is formed by the protonation of ammonia (NH3).

Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations ([NR4]+), where one or more hydrogen atoms are replaced by organic groups (indicated by R).

An example of a reaction forming an ammonium ion is that between dimethylamine, (CH3)2NH, and an acid to give the dimethylammonium cation, [(CH3)2NH2]+: