Ammonia

Ball-and-stick model of the diamminesilver(I) cation, [Ag(NH3)2]+
Ball-and-stick model of the tetraamminediaquacopper(II) cation, [Cu(NH3)4(H2O)2](2+)
Jabir ibn Hayyan
This high-pressure reactor was built in 1921 by BASF in Ludwigshafen and was re-erected on the premises of the University of Karlsruhe in Germany.
A train carrying Anhydrous Ammonia.
Liquid ammonia bottle
Household ammonia
Ammoniacal Gas Engine Streetcar in New Orleans drawn by Alfred Waud in 1871.
The X-15 aircraft used ammonia as one component fuel of its rocket engine
Anti-meth sign on tank of anhydrous ammonia, Otley, Iowa. Anhydrous ammonia is a common farm fertilizer that is also a critical ingredient in making methamphetamine. In 2005, Iowa used grant money to give out thousands of locks to prevent criminals from getting into the tanks.
The world's longest ammonia pipeline (roughly 2400 km long), running from the TogliattiAzot plant in Russia to Odessa in Ukraine
Hydrochloric acid sample releasing HCl fumes, which are reacting with ammonia fumes to produce a white smoke of ammonium chloride.
Production trend of ammonia between 1947 and 2007
Main symptoms of hyperammonemia (ammonia reaching toxic concentrations).
Ammonia occurs in the atmospheres of the outer giant planets such as Jupiter (0.026% ammonia), Saturn (0.012% ammonia), and in the atmospheres and ices of Uranus and Neptune.

Compound of nitrogen and hydrogen with the formula NH3.

- Ammonia
Ball-and-stick model of the diamminesilver(I) cation, [Ag(NH3)2]+

156 related topics

Alpha

Daniel Rutherford, discoverer of nitrogen

Nitrogen

Chemical element with the symbol N and atomic number 7.

Chemical element with the symbol N and atomic number 7.

Daniel Rutherford, discoverer of nitrogen
The shapes of the five orbitals occupied in nitrogen. The two colours show the phase or sign of the wave function in each region. From left to right: 1s, 2s (cutaway to show internal structure), 2px, 2py, 2pz.
Table of nuclides (Segrè chart) from carbon to fluorine (including nitrogen). Orange indicates proton emission (nuclides outside the proton drip line); pink for positron emission (inverse beta decay); black for stable nuclides; blue for electron emission (beta decay); and violet for neutron emission (nuclides outside the neutron drip line). Proton number increases going up the vertical axis and neutron number going to the right on the horizontal axis.
Molecular orbital diagram of dinitrogen molecule, N2. There are five bonding orbitals and two antibonding orbitals (marked with an asterisk; orbitals involving the inner 1s electrons not shown), giving a total bond order of three.
Solid nitrogen on the plains of Sputnik Planitia on Pluto next to water ice mountains
Structure of [Ru(NH3)5(N2)]2+ (pentaamine(dinitrogen)ruthenium(II)), the first dinitrogen complex to be discovered
Mesomeric structures of borazine, (–BH–NH–)3
Standard reduction potentials for nitrogen-containing species. Top diagram shows potentials at pH 0; bottom diagram shows potentials at pH 14.
Nitrogen trichloride
Nitrogen dioxide at −196 °C, 0 °C, 23 °C, 35 °C, and 50 °C. converts to colourless dinitrogen tetroxide at low temperatures, and reverts to  at higher temperatures.
Fuming nitric acid contaminated with yellow nitrogen dioxide
Schematic representation of the flow of nitrogen compounds through a land environment
A container vehicle carrying liquid nitrogen.

Many industrially important compounds, such as ammonia, nitric acid, organic nitrates (propellants and explosives), and cyanides, contain nitrogen.

Carl Wilhelm Scheele, discoverer of chlorine

Chlorine

Chemical element with the symbol Cl and atomic number 17.

Chemical element with the symbol Cl and atomic number 17.

Carl Wilhelm Scheele, discoverer of chlorine
Chlorine, liquefied under a pressure of 7.4 bar at room temperature, displayed in a quartz ampule embedded in acrylic glass.
Solid chlorine at −150 °C
Structure of solid deuterium chloride, with D···Cl hydrogen bonds
Hydrated nickel(II) chloride, NiCl2(H2O)6.
Yellow chlorine dioxide (ClO2) gas above a solution containing chlorine dioxide.
Structure of dichlorine heptoxide, Cl2O7, the most stable of the chlorine oxides
Suggested mechanism for the chlorination of a carboxylic acid by phosphorus pentachloride to form an acyl chloride
Liquid chlorine analysis
Membrane cell process for chloralkali production
Ignaz Semmelweis
Liquid Pool Chlorine
Chlorine "attack" on an acetal resin plumbing joint resulting from a fractured acetal joint in a water supply system which started at an injection molding defect in the joint and slowly grew until the part failed; the fracture surface shows iron and calcium salts that were deposited in the leaking joint from the water supply before failure and are the indirect result of the chlorine attack

Hypochlorite bleach (a popular laundry additive) combined with ammonia (another popular laundry additive) produces chloramines, another toxic group of chemicals.

The Space Shuttle Main Engine burnt hydrogen with oxygen, producing a nearly invisible flame at full thrust.

Hydrogen

Chemical element with the symbol H and atomic number 1.

Chemical element with the symbol H and atomic number 1.

The Space Shuttle Main Engine burnt hydrogen with oxygen, producing a nearly invisible flame at full thrust.
Depiction of a hydrogen atom with size of central proton shown, and the atomic diameter shown as about twice the Bohr model radius (image not to scale)
Hydrogen gas is colorless and transparent, here contained in a glass ampoule.
Phase diagram of hydrogen. The temperature and pressure scales are logarithmic, so one unit corresponds to a 10x change. The left edge corresponds to 105 Pa, which is about atmospheric pressure.
A sample of sodium hydride
Hydrogen discharge (spectrum) tube
Deuterium discharge (spectrum) tube
Antoine-Laurent de Lavoisier
Hydrogen emission spectrum lines in the visible range. These are the four visible lines of the Balmer series
NGC 604, a giant region of ionized hydrogen in the Triangulum Galaxy
300x300px
300x300px
360x360px

Most hydrogen is used near the site of its production, the two largest uses being fossil fuel processing (e.g., hydrocracking) and ammonia production, mostly for the fertilizer market.

Fritz Haber, 1918

Haber process

Artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today.

Artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today.

Fritz Haber, 1918
A historical (1921) high-pressure steel reactor for production of ammonia via the Haber process is displayed at the Karlsruhe Institute of Technology, Germany
First reactor at the Oppau plant in 1913
Profiles of the active components of heterogeneous catalysts; the top right figure shows the profile of a shell catalyst.
Modern ammonia reactor with heat exchanger modules: The cold gas mixture is preheated to reaction temperature in heat exchangers by the reaction heat and cools in turn the produced ammonia.
Energy diagram
Industrial fertilizer plant

The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using a metal catalyst under high temperatures and pressures:

A plant in Bangladesh that produces urea fertilizer.

Urea

Organic compound with chemical formula CO2.

Organic compound with chemical formula CO2.

A plant in Bangladesh that produces urea fertilizer.
Urea plant using ammonium carbamate briquettes, Fixed Nitrogen Research Laboratory, ca. 1930

The liver forms it by combining two ammonia molecules (NH3) with a carbon dioxide (CO2) molecule in the urea cycle.

Amide formation

Amine

In organic chemistry, amines (, UK also ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair.

In organic chemistry, amines (, UK also ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair.

Amide formation

Amines are formally derivatives of ammonia (NH3), wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group (these may respectively be called alkylamines and arylamines; amines in which both types of substituent are attached to one nitrogen atom may be called alkylarylamines).

Zinc, a typical metal, reacting with hydrochloric acid, a typical acid

Acid

Molecule or ion capable of either donating a proton , known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

Molecule or ion capable of either donating a proton , known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

Zinc, a typical metal, reacting with hydrochloric acid, a typical acid
Svante Arrhenius
Acetic acid, a weak acid, donates a proton (hydrogen ion, highlighted in green) to water in an equilibrium reaction to give the acetate ion and the hydronium ion. Red: oxygen, black: carbon, white: hydrogen.
Hydrochloric acid (in beaker) reacting with ammonia fumes to produce ammonium chloride (white smoke).
This is an ideal titration curve for alanine, a diprotic amino acid. Point 2 is the first equivalent point where the amount of NaOH added equals the amount of alanine in the original solution.
Carbonated water (H2CO3 aqueous solution) is commonly added to soft drinks to make them effervesce.
Basic structure of an amino acid.
Aspirin (acetylsalicylic acid) is a carboxylic acid

An example is boron trifluoride (BF3), whose boron atom has a vacant orbital that can form a covalent bond by sharing a lone pair of electrons on an atom in a base, for example the nitrogen atom in ammonia (NH3).

BMIM+PF6−, an ionic liquid

Salt (chemistry)

Chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge.

Chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge.

BMIM+PF6−, an ionic liquid
Edge-on view of portion of crystal structure of hexamethyleneTTF/TCNQ charge transfer salt.
Solid lead(II) sulfate (PbSO4)

Salts of strong acids and strong bases ("strong salts") are non-volatile and often odorless, whereas salts of either weak acids or weak bases ("weak salts") may smell like the conjugate acid (e.g., acetates like acetic acid (vinegar) and cyanides like hydrogen cyanide (almonds)) or the conjugate base (e.g., ammonium salts like ammonia) of the component ions.

A water molecule consists of two hydrogen atoms and one oxygen atom

Water

Inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a solvent ).

Inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a solvent ).

A water molecule consists of two hydrogen atoms and one oxygen atom
The three common states of matter
Phase diagram of water (simplified)
Tetrahedral structure of water
Model of hydrogen bonds (1) between molecules of water
Water cycle
Overview of photosynthesis (green) and respiration (red)
Water fountain
An environmental science program – a student from Iowa State University sampling water
Total water withdrawals for agricultural, industrial and municipal purposes per capita, measured in cubic metres (m³) per year in 2010
A young girl drinking bottled water
Water availability: the fraction of the population using improved water sources by country
Roadside fresh water outlet from glacier, Nubra
Hazard symbol for non-potable water
Water is used for fighting wildfires.
San Andrés island, Colombia
Water can be used to cook foods such as noodles
Sterile water for injection
Band 5 ALMA receiver is an instrument specifically designed to detect water in the universe.
South polar ice cap of Mars during Martian south summer 2000
An estimate of the proportion of people in developing countries with access to potable water 1970–2000
People come to Inda Abba Hadera spring (Inda Sillasie, Ethiopia) to wash in holy water
Icosahedron as a part of Spinoza monument in Amsterdam.
Water requirement per tonne of food product
Irrigation of field crops
Specific heat capacity of water

In inorganic reactions, water is a common solvent, dissolving many ionic compounds, as well as other polar compounds such as ammonia and compounds closely related to water.

Fuming nitric acid contaminated with yellow nitrogen dioxide

Nitric acid

Inorganic compound with the formula HNO3.

Inorganic compound with the formula HNO3.

Fuming nitric acid contaminated with yellow nitrogen dioxide
Two major resonance representations of HNO3
Nitric acid in a laboratory

Upon adding a base such as ammonia, the color turns orange.