Ammonia

Ball-and-stick model of the diamminesilver(I) cation, [Ag(NH3)2]+
Ball-and-stick model of the tetraamminediaquacopper(II) cation, [Cu(NH3)4(H2O)2](2+)
Jabir ibn Hayyan
This high-pressure reactor was built in 1921 by BASF in Ludwigshafen and was re-erected on the premises of the University of Karlsruhe in Germany.
A train carrying Anhydrous Ammonia.
Liquid ammonia bottle
Household ammonia
Ammoniacal Gas Engine Streetcar in New Orleans drawn by Alfred Waud in 1871.
The X-15 aircraft used ammonia as one component fuel of its rocket engine
Anti-meth sign on tank of anhydrous ammonia, Otley, Iowa. Anhydrous ammonia is a common farm fertilizer that is also a critical ingredient in making methamphetamine. In 2005, Iowa used grant money to give out thousands of locks to prevent criminals from getting into the tanks.
The world's longest ammonia pipeline (roughly 2400 km long), running from the TogliattiAzot plant in Russia to Odessa in Ukraine
Hydrochloric acid sample releasing HCl fumes, which are reacting with ammonia fumes to produce a white smoke of ammonium chloride.
Production trend of ammonia between 1947 and 2007
Main symptoms of hyperammonemia (ammonia reaching toxic concentrations).
Ammonia occurs in the atmospheres of the outer giant planets such as Jupiter (0.026% ammonia), Saturn (0.012% ammonia), and in the atmospheres and ices of Uranus and Neptune.

Compound of nitrogen and hydrogen with the formula NH3.

- Ammonia
Ball-and-stick model of the diamminesilver(I) cation, [Ag(NH3)2]+

156 related topics

Alpha

A farmer spreading manure to improve soil fertility

Fertilizer

Any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients.

Any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients.

A farmer spreading manure to improve soil fertility
World population supported with and without synthetic nitrogen fertilizers.
Founded in 1812, Mirat, producer of manures and fertilizers, is claimed to be the oldest industrial business in Salamanca (Spain).
Six tomato plants grown with and without nitrate fertilizer on nutrient-poor sand/clay soil. One of the plants in the nutrient-poor soil has died.
Inorganic fertilizer use by region
Total nitrogenous fertilizer consumption per region, measured in tonnes of total nutrient per year.
An apatite mine in Siilinjärvi, Finland.
Compost bin for small-scale production of organic fertilizer
A large commercial compost operation
Applying superphosphate fertilizer by hand, New Zealand, 1938
Fertilizer burn
N-Butylthiophosphoryltriamide, an enhanced efficiency fertilizer.
Fertilizer use (2018). From FAO's World Food and Agriculture – Statistical Yearbook 2020
The diagram displays the statistics of fertilizer consumption in western and central European counties from data published by The World Bank for 2012.
Runoff of soil and fertilizer during a rain storm
Large pile of phosphogypsum waste near Fort Meade, Florida.
Red circles show the location and size of many dead zones.
Global methane concentrations (surface and atmospheric) for 2005; note distinct plumes

Only some bacteria and their host plants (notably legumes) can fix atmospheric nitrogen (N2) by converting it to ammonia.

Fumes from hydrochloric acid and ammonia forming a white cloud of ammonium chloride

Ammonium

Positively charged polyatomic ion with the chemical formula.

Positively charged polyatomic ion with the chemical formula.

Fumes from hydrochloric acid and ammonia forming a white cloud of ammonium chloride
Formation of ammonium

It is formed by the protonation of ammonia.

480px

Urea cycle

480px
Urea cycle.
Urea cycle colored.

The urea cycle (also known as the ornithine cycle) is a cycle of biochemical reactions that produces urea (NH2)2CO from ammonia (NH3).

Hydrogen atom (center) contains a single proton and a single electron. Removal of the electron gives a cation (left), whereas the addition of an electron gives an anion (right). The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only charge-+1 cation that has no electrons, but even cations that (unlike hydrogen) retain one or more electrons are still smaller than the neutral atoms or molecules from which they are derived.

Ammonium nitrate

Chemical compound with the chemical formula NH4NO3.

Chemical compound with the chemical formula NH4NO3.

Hydrogen atom (center) contains a single proton and a single electron. Removal of the electron gives a cation (left), whereas the addition of an electron gives an anion (right). The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only charge-+1 cation that has no electrons, but even cations that (unlike hydrogen) retain one or more electrons are still smaller than the neutral atoms or molecules from which they are derived.

Ca(NO3)2 + 2 NH3 + CO2 + H2O → 2 NH4NO3 + CaCO3

Soaps are weak bases formed by the reaction of fatty acids with sodium hydroxide or potassium hydroxide.

Base (chemistry)

In chemistry, there are three definitions in common use of the word base, known as Arrhenius bases, Brønsted bases, and Lewis bases.

In chemistry, there are three definitions in common use of the word base, known as Arrhenius bases, Brønsted bases, and Lewis bases.

Soaps are weak bases formed by the reaction of fatty acids with sodium hydroxide or potassium hydroxide.
Ammonia fumes from aqueous ammonium hydroxide (in test tube) reacting with hydrochloric acid (in beaker) to produce ammonium chloride (white smoke).
Sodium hydroxide
Barium hydroxide

However, there are also other Brønsted bases which accept protons, such as aqueous solutions of ammonia (NH3) or its organic derivatives (amines).

Petalite, the lithium mineral from which lithium was first isolated

Alkali metal

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).

Petalite, the lithium mineral from which lithium was first isolated
Johann Wolfgang Döbereiner was among the first to notice similarities between what are now known as the alkali metals.
Lepidolite, the rubidium mineral from which rubidium was first isolated
Dmitri Mendeleev's periodic system proposed in 1871 showing hydrogen and the alkali metals as part of his group I, along with copper, silver, and gold
Estimated abundances of the chemical elements in the Solar system. Hydrogen and helium are most common, from the Big Bang. The next three elements (lithium, beryllium, and boron) are rare because they are poorly synthesised in the Big Bang and also in stars. The two general trends in the remaining stellar-produced elements are: (1) an alternation of abundance in elements as they have even or odd atomic numbers, and (2) a general decrease in abundance, as elements become heavier. Iron is especially common because it represents the minimum energy nuclide that can be made by fusion of helium in supernovae.
Spodumene, an important lithium mineral
Effective nuclear charge on an atomic electron
Periodic trend for ionisation energy: each period begins at a minimum for the alkali metals, and ends at a maximum for the noble gases. Predicted values are used for elements beyond 104.
The variation of Pauling electronegativity (y-axis) as one descends the main groups of the periodic table from the second to the sixth period
A reaction of 3 pounds (≈ 1.4 kg) of sodium with water
Liquid NaK alloy at room temperature
Unit cell ball-and-stick model of lithium nitride. On the basis of size a tetrahedral structure would be expected, but that would be geometrically impossible: thus lithium nitride takes on this unique crystal structure.
Structure of the octahedral n-butyllithium hexamer, (C4H9Li)6. The aggregates are held together by delocalised covalent bonds between lithium and the terminal carbon of the butyl chain. There is no direct lithium–lithium bonding in any organolithium compound.
Solid phenyllithium forms monoclinic crystals can be described as consisting of dimeric Li2(C6H5)2 subunits. The lithium atoms and the ipso carbons of the phenyl rings form a planar four-membered ring. The plane of the phenyl groups are perpendicular to the plane of this Li2C2 ring. Additional strong intermolecular bonding occurs between these phenyllithium dimers and the π electrons of the phenyl groups in the adjacent dimers, resulting in an infinite polymeric ladder structure.
Reduction reactions using sodium in liquid ammonia
Empirical (Na–Cs, Mg–Ra) and predicted (Fr–Uhp, Ubn–Uhh) atomic radius of the alkali and alkaline earth metals from the third to the ninth period, measured in angstroms
Empirical (Na–Fr) and predicted (Uue) electron affinity of the alkali metals from the third to the eighth period, measured in electron volts
Empirical (Na–Fr, Mg–Ra) and predicted (Uue–Uhp, Ubn–Uhh) ionisation energy of the alkali and alkaline earth metals from the third to the ninth period, measured in electron volts
Similarly to the alkali metals, ammonia reacts with hydrochloric acid to form the salt ammonium chloride.
Very pure thallium pieces in a glass ampoule, stored under argon gas
This sample of uraninite contains about 100,000 atoms (3.3 g) of francium-223 at any given time.
FOCS 1, a caesium atomic clock in Switzerland
Lithium carbonate
A wheel type radiotherapy device which has a long collimator to focus the radiation into a narrow beam. The caesium-137 chloride radioactive source is the blue square, and gamma rays are represented by the beam emerging from the aperture. This was the radiation source involved in the Goiânia accident, containing about 93 grams of caesium-137 chloride.

Not only do the alkali metals react with water, but also with proton donors like alcohols and phenols, gaseous ammonia, and alkynes, the last demonstrating the phenomenal degree of their reactivity.

A range of industrial catalysts in pellet form

Catalysis

Process of increasing the rate of a chemical reaction by adding a substance known as a catalyst.

Process of increasing the rate of a chemical reaction by adding a substance known as a catalyst.

A range of industrial catalysts in pellet form
An air filter that utilizes a low-temperature oxidation catalyst to convert carbon monoxide to less toxic carbon dioxide at room temperature. It can also remove formaldehyde from the air.
Generic potential energy diagram showing the effect of a catalyst in a hypothetical exothermic chemical reaction X + Y to give Z. The presence of the catalyst opens a different reaction pathway (shown in red) with a lower activation energy. The final result and the overall thermodynamics are the same.
The microporous molecular structure of the zeolite ZSM-5 is exploited in catalysts used in refineries
Zeolites are extruded as pellets for easy handling in catalytic reactors.
Left: Partially caramelized cube sugar, Right: burning cube sugar with ash as catalyst
levofloxaxin synthesis

For example, in the Haber process, finely divided iron serves as a catalyst for the synthesis of ammonia from nitrogen and hydrogen.

Silver is extremely ductile, and can be drawn into a wire one atom wide.

Silver

Chemical element with the symbol Ag and atomic number 47.

Chemical element with the symbol Ag and atomic number 47.

Silver is extremely ductile, and can be drawn into a wire one atom wide.
Silver(I) sulfide
The three common silver halide precipitates: from left to right, silver iodide, silver bromide, and silver chloride.
Crystals of silver nitrate
Structure of the diamminesilver(I) complex, [Ag(NH3)2]+
Different colors of silver–copper–gold alloys
Silver vase, circa 2400 BC
Silver mining and processing in Kutná Hora, Bohemia, 1490s
16th-century fresco painting of Judas being paid thirty pieces of silver for his betrayal of Jesus
Acanthite sample from the Imider mine in Morocco
A 2004 American Silver Eagle bullion coin, minted in .999 fine silver.
Embossed silver sarcophagus of Saint Stanislaus in the Wawel Cathedral was created in main centers of the 17th century European silversmithery - Augsburg and Gdańsk
17th century silverware
A tray of South Asian sweets, with some pieces covered with shiny silver vark
Proto-Elamite kneeling bull holding a spouted vessel; 3100–2900 BC; 16.3 x 6.3 x 10.8 cm; Metropolitan Museum of Art (New York City)
Ancient Egyptian figurine of Horus as falcon god with an Egyptian crown; circa 500 BC; silver and electrum; height: 26.9 cm; Staatliche Sammlung für Ägyptische Kunst (Munich, Germany)
Ancient Greek tetradrachm; 315–308 BC; diameter: 2.7 cm; Metropolitan Museum of Art
Ancient Greek gilded bowl; 2nd–1st century BC; height: 7.6 cm, dimeter: 14.8 cm; Metropolitan Museum of Art
Roman plate; 1st–2nd century AD; height: 0.1 cm, diameter: 12.7 cm; Metropolitan Museum of Art
Roman bust of Serapis; 2nd century; 15.6 x 9.5 cm; Metropolitan Museum of Art
Auricular basin with scenes from the story of Diana and Actaeon; 1613; length: 50 cm, height: 6 cm, width: 40 cm; Rijksmuseum (Amsterdam, the Netherlands)
French Rococo tureen; 1749; height: 26.3 cm, width: 39 cm, depth: 24 cm; Metropolitan Museum of Art
French Rococo coffeepot; 1757; height: 29.5 cm; Metropolitan Museum of Art
French Neoclassical ewer; 1784–1785; height: 32.9 cm; Metropolitan Museum of Art
Neo-Rococo coffeepot; 1845; overall: 32 x 23.8 x 15.4 cm; Cleveland Museum of Art (Cleveland, Ohio, USA)
French Art Nouveau dessert spoons; circa 1890; Cooper Hewitt, Smithsonian Design Museum (New York City)
Art Nouveau jardinière; circa 1905–1910; height: 22 cm, width: 47 cm, depth: 22.5 cm; Cooper Hewitt, Smithsonian Design Museum
Hand mirror; 1906; height: 20.7 cm, weight: 88 g; Rijksmuseum (Amsterdam, the Netherlands)
Mystery watch; ca. 1889; diameter: 5.4 cm, depth: 1.8 cm; Musée d'Horlogerie of Le Locle, (Switzerland)

The resulting adduct can be decomposed with ammonia to release the free alkene.

Drops of concentrated sulfuric acid rapidly decompose a piece of cotton towel by dehydration.

Sulfuric acid

Mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formula H2SO4.

Mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formula H2SO4.

Drops of concentrated sulfuric acid rapidly decompose a piece of cotton towel by dehydration.
Solid state structure of the [D3SO4]+ ion present in [D3SO4]+[SbF6]−, synthesized by using DF in place of HF. (see text)
Rio Tinto with its highly acidic water
Sulfuric acid production in 2000
Acidic drain cleaners usually contain sulfuric acid at a high concentration which turns a piece of pH paper red and chars it instantly, demonstrating both the strong acidic nature and dehydrating property.
An acidic drain cleaner can be used to dissolve grease, hair and even tissue paper inside water pipes.
John Dalton's 1808 sulfuric acid molecule shows a central sulfur atom bonded to three oxygen atoms, or sulfur trioxide, the anhydride of sulfuric acid.
Drops of 98% sulfuric acid char a piece of tissue paper instantly. Carbon is left after the dehydration reaction staining the paper black.
Superficial chemical burn caused by two 98% sulfuric acid splashes (forearm skin)
70px
70px

Reacting the ammonia produced in the thermal decomposition of coal with waste sulfuric acid allows the ammonia to be crystallized out as a salt (often brown because of iron contamination) and sold into the agro-chemicals industry.

Full disk view in natural colour, taken by the Hubble Space Telescope in April 2014

Jupiter

Fifth planet from the Sun and the largest in the Solar System.

Fifth planet from the Sun and the largest in the Solar System.

Full disk view in natural colour, taken by the Hubble Space Telescope in April 2014
♃
Jupiter's diameter is one order of magnitude smaller (×0.10045) than that of the Sun, and one order of magnitude larger (×10.9733) than that of Earth. The Great Red Spot is roughly the same size as Earth.
Diagram of Jupiter, its interior, surface features, rings, and inner moons.
Time-lapse sequence from the approach of Voyager 1, showing the motion of atmospheric bands and circulation of the Great Red Spot. Recorded over 32 days with one photograph taken every 10 hours (once per Jovian day). See [[:File:Jupiter from Voyager 1 PIA02855 max quality.ogv|full size video]].
Close up of the Great Red Spot imaged by the Juno spacecraft in April 2018
The Great Red Spot is decreasing in size (May 15, 2014)
Jupiter (red) completes one orbit of the Sun (centre) for every 11.86 orbits by Earth (blue)
A rotation time-lapse of Jupiter over 3 hours
Model in the Almagest of the longitudinal motion of Jupiter (☉) relative to Earth (🜨)
Galileo Galilei, discoverer of the four largest moons of Jupiter, now known as Galilean moons
Infrared image of Jupiter taken by ESO's Very Large Telescope
Jupiter as seen by the space probe Cassini
A photograph of Jupiter taken by the Juno spacecraft, at the end of a close flyby
(September 2018)
Jupiter, as seen by the Juno spacecraft
(February 12, 2019)
The rings of Jupiter
Diagram showing the Trojan asteroids in Jupiter's orbit, as well as the main asteroid belt
Hubble image taken on July 23, 2009, showing a blemish about 5000 miles long left by the 2009 Jupiter impact event.
Jupiter, woodcut from a 1550 edition of Guido Bonatti's Liber Astronomiae
80px
Infrared view of Jupiter, imaged by the Gemini North telescope in Hawaiʻi on January 11, 2017
Jupiter imaged in visible light by the Hubble Space Telescope on January 11, 2017
Ultraviolet view of Jupiter, imaged by Hubble on January 11, 2017<ref>{{cite web|title=By Jove! Jupiter Shows Its Stripes and Colors|publisher=National Science Foundation|website=NOIRLab|date=May 11, 2021|url=https://noirlab.edu/public/news/noirlab2116/|access-date=June 17, 2021}}</ref>
This image of Jupiter and Europa, taken by Hubble on 25 August 2020, was captured when the planet was 653 million kilometres from Earth.<ref>{{cite web|title=Hubble Finds Evidence of Persistent Water Vapour Atmosphere on Europa|website=ESA Hubble|publisher=European Space Agency|date=October 14, 2021|url=https://esahubble.org/news/heic2111/|access-date=October 26, 2021}}</ref>

The atmosphere contains trace amounts of methane, water vapour, ammonia, and silicon-based compounds.