A report on Ammonia

Ball-and-stick model of the diamminesilver(I) cation, [Ag(NH3)2]+
Ball-and-stick model of the tetraamminediaquacopper(II) cation, [Cu(NH3)4(H2O)2](2+)
Jabir ibn Hayyan
This high-pressure reactor was built in 1921 by BASF in Ludwigshafen and was re-erected on the premises of the University of Karlsruhe in Germany.
A train carrying Anhydrous Ammonia.
Liquid ammonia bottle
Household ammonia
Ammoniacal Gas Engine Streetcar in New Orleans drawn by Alfred Waud in 1871.
The X-15 aircraft used ammonia as one component fuel of its rocket engine
Anti-meth sign on tank of anhydrous ammonia, Otley, Iowa. Anhydrous ammonia is a common farm fertilizer that is also a critical ingredient in making methamphetamine. In 2005, Iowa used grant money to give out thousands of locks to prevent criminals from getting into the tanks.
The world's longest ammonia pipeline (roughly 2400 km long), running from the TogliattiAzot plant in Russia to Odessa in Ukraine
Hydrochloric acid sample releasing HCl fumes, which are reacting with ammonia fumes to produce a white smoke of ammonium chloride.
Production trend of ammonia between 1947 and 2007
Main symptoms of hyperammonemia (ammonia reaching toxic concentrations).
Ammonia occurs in the atmospheres of the outer giant planets such as Jupiter (0.026% ammonia), Saturn (0.012% ammonia), and in the atmospheres and ices of Uranus and Neptune.

Compound of nitrogen and hydrogen with the formula NH3.

- Ammonia
Ball-and-stick model of the diamminesilver(I) cation, [Ag(NH3)2]+

159 related topics with Alpha

Overall

A range of industrial catalysts in pellet form

Catalysis

6 links

Process of increasing the rate of a chemical reaction by adding a substance known as a catalyst.

Process of increasing the rate of a chemical reaction by adding a substance known as a catalyst.

A range of industrial catalysts in pellet form
An air filter that utilizes a low-temperature oxidation catalyst to convert carbon monoxide to less toxic carbon dioxide at room temperature. It can also remove formaldehyde from the air.
Generic potential energy diagram showing the effect of a catalyst in a hypothetical exothermic chemical reaction X + Y to give Z. The presence of the catalyst opens a different reaction pathway (shown in red) with a lower activation energy. The final result and the overall thermodynamics are the same.
The microporous molecular structure of the zeolite ZSM-5 is exploited in catalysts used in refineries
Zeolites are extruded as pellets for easy handling in catalytic reactors.
Left: Partially caramelized cube sugar, Right: burning cube sugar with ash as catalyst
levofloxaxin synthesis

For example, in the Haber process, finely divided iron serves as a catalyst for the synthesis of ammonia from nitrogen and hydrogen.

Pictured in natural color approaching equinox, photographed by Cassini in July 2008; the dot in the bottom left corner is Titan

Saturn

3 links

Sixth planet from the Sun and the second-largest in the Solar System, after Jupiter.

Sixth planet from the Sun and the second-largest in the Solar System, after Jupiter.

Pictured in natural color approaching equinox, photographed by Cassini in July 2008; the dot in the bottom left corner is Titan
The symbol for Saturn in late Classical (4th & 5th c.) and medieval Byzantine (11th c.) manuscripts, derives from (kappa-rho).
♄
Composite image comparing the sizes of Saturn and Earth
Diagram of Saturn, to scale
Methane bands circle Saturn. The moon Dione hangs below the rings to the right.
A global storm girdles the planet in 2011. The storm passes around the planet, such that the storm's head (bright area) passes its tail.
Saturn and rings as viewed by the Cassini spacecraft (28 October 2016)
A montage of Saturn and its principal moons (Dione, Tethys, Mimas, Enceladus, Rhea and Titan; Iapetus not shown). This image was created from photographs taken in November 1980 by the Voyager 1 spacecraft.
Possible beginning of a new moon (white dot) of Saturn (image taken by Cassini on 15 April 2013)
Galileo Galilei observed the rings of Saturn in 1610, but was unable to determine what they were
Robert Hooke noted the shadows (a and b) cast by both the globe and the rings on each other in this drawing of Saturn in 1666.
Pioneer 11 image of Saturn
At Enceladus's south pole geysers spray water from many locations along the tiger stripes.
Amateur telescopic view of Saturn
Simulated appearance of Saturn as seen from Earth (at opposition) during an orbit of Saturn, 2001–2029
Saturn eclipses the Sun, as seen from Cassini. The rings are visible, including the F Ring.
orientation of its rings
HST Saturn portrait from 20 June 2019
Farewell to Saturn and moons (Enceladus, Epimetheus, Janus, Mimas, Pandora and Prometheus), by Cassini (21 November 2017).

Saturn has a pale yellow hue due to ammonia crystals in its upper atmosphere.

480px

Urea cycle

7 links

480px
Urea cycle.
Urea cycle colored.

The urea cycle (also known as the ornithine cycle) is a cycle of biochemical reactions that produces urea (NH2)2CO from ammonia (NH3).

Diagram of some Lewis and

Lewis acids and bases

5 links

Chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct.

Chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct.

Diagram of some Lewis and
Major structural changes accompany binding of the Lewis base to the coordinatively unsaturated, planar Lewis acid BF3
MO diagram depicting the formation of a dative covalent bond between two atoms

For example, NH3 is a Lewis base, because it can donate its lone pair of electrons.

Pnictogen hydride

4 links

Pnictogen hydrides or hydrogen pnictides are binary compounds of hydrogen with pnictogen ( or ; from "to choke" and -gen, "generator") atoms (elements of group 15: nitrogen, phosphorus, arsenic, antimony, and bismuth) covalently bonded to hydrogen.

Pnictogen hydrides or hydrogen pnictides are binary compounds of hydrogen with pnictogen ( or ; from "to choke" and -gen, "generator") atoms (elements of group 15: nitrogen, phosphorus, arsenic, antimony, and bismuth) covalently bonded to hydrogen.

Unlike other hydrides such as hydrogen sulfide and hydrogen fluoride, which form acidic aqueous solutions, ammonia dissolves in water to make ammonium hydroxide which is basic (by forming a hydroxide ion as opposed to hydronium).

Model of hydrogen bonds (1) between molecules of water

Hydrogen bond

5 links

Primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group, and another electronegative atom bearing a lone pair of electrons—the hydrogen bond acceptor (Ac).

Primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group, and another electronegative atom bearing a lone pair of electrons—the hydrogen bond acceptor (Ac).

Model of hydrogen bonds (1) between molecules of water
AFM image of naphthalenetetracarboxylic diimide molecules on silver-terminated silicon, interacting via hydrogen bonding, taken at 77  K. ("Hydrogen bonds" in the top image are exaggerated by artifacts of the imaging technique. )
An example of intermolecular hydrogen bonding in a self-assembled dimer complex. The hydrogen bonds are represented by dotted lines.
Intramolecular hydrogen bonding in acetylacetone helps stabilize the enol tautomer.
Examples of hydrogen bond donating (donors) and hydrogen bond accepting groups (acceptors)
Cyclic dimer of acetic acid; dashed green lines represent hydrogen bonds
Crystal structure of hexagonal ice. Gray dashed lines indicate hydrogen bonds
Structure of nickel bis(dimethylglyoximate), which features two linear hydrogen-bonds.
The structure of part of a DNA double helix
Hydrogen bonding between guanine and cytosine, one of two types of base pairs in DNA
Para-aramid structure
A strand of cellulose (conformation Iα), showing the hydrogen bonds (dashed) within and between cellulose molecules

For example, hydrogen fluoride—which has three lone pairs on the F atom but only one H atom—can form only two bonds; (ammonia has the opposite problem: three hydrogen atoms but only one lone pair).

Ammonia solution

1 links

Ammonia solution, also known as ammonia water, ammonium hydroxide, ammoniacal liquor, ammonia liquor, aqua ammonia, aqueous ammonia, or (inaccurately) ammonia, is a solution of ammonia in water.

Petalite, the lithium mineral from which lithium was first isolated

Alkali metal

6 links

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).

Petalite, the lithium mineral from which lithium was first isolated
Johann Wolfgang Döbereiner was among the first to notice similarities between what are now known as the alkali metals.
Lepidolite, the rubidium mineral from which rubidium was first isolated
Dmitri Mendeleev's periodic system proposed in 1871 showing hydrogen and the alkali metals as part of his group I, along with copper, silver, and gold
Estimated abundances of the chemical elements in the Solar system. Hydrogen and helium are most common, from the Big Bang. The next three elements (lithium, beryllium, and boron) are rare because they are poorly synthesised in the Big Bang and also in stars. The two general trends in the remaining stellar-produced elements are: (1) an alternation of abundance in elements as they have even or odd atomic numbers, and (2) a general decrease in abundance, as elements become heavier. Iron is especially common because it represents the minimum energy nuclide that can be made by fusion of helium in supernovae.
Spodumene, an important lithium mineral
Effective nuclear charge on an atomic electron
Periodic trend for ionisation energy: each period begins at a minimum for the alkali metals, and ends at a maximum for the noble gases. Predicted values are used for elements beyond 104.
The variation of Pauling electronegativity (y-axis) as one descends the main groups of the periodic table from the second to the sixth period
A reaction of 3 pounds (≈ 1.4 kg) of sodium with water
Liquid NaK alloy at room temperature
Unit cell ball-and-stick model of lithium nitride. On the basis of size a tetrahedral structure would be expected, but that would be geometrically impossible: thus lithium nitride takes on this unique crystal structure.
Structure of the octahedral n-butyllithium hexamer, (C4H9Li)6. The aggregates are held together by delocalised covalent bonds between lithium and the terminal carbon of the butyl chain. There is no direct lithium–lithium bonding in any organolithium compound.
Solid phenyllithium forms monoclinic crystals can be described as consisting of dimeric Li2(C6H5)2 subunits. The lithium atoms and the ipso carbons of the phenyl rings form a planar four-membered ring. The plane of the phenyl groups are perpendicular to the plane of this Li2C2 ring. Additional strong intermolecular bonding occurs between these phenyllithium dimers and the π electrons of the phenyl groups in the adjacent dimers, resulting in an infinite polymeric ladder structure.
Reduction reactions using sodium in liquid ammonia
Empirical (Na–Cs, Mg–Ra) and predicted (Fr–Uhp, Ubn–Uhh) atomic radius of the alkali and alkaline earth metals from the third to the ninth period, measured in angstroms
Empirical (Na–Fr) and predicted (Uue) electron affinity of the alkali metals from the third to the eighth period, measured in electron volts
Empirical (Na–Fr, Mg–Ra) and predicted (Uue–Uhp, Ubn–Uhh) ionisation energy of the alkali and alkaline earth metals from the third to the ninth period, measured in electron volts
Similarly to the alkali metals, ammonia reacts with hydrochloric acid to form the salt ammonium chloride.
Very pure thallium pieces in a glass ampoule, stored under argon gas
This sample of uraninite contains about 100,000 atoms (3.3 g) of francium-223 at any given time.
FOCS 1, a caesium atomic clock in Switzerland
Lithium carbonate
A wheel type radiotherapy device which has a long collimator to focus the radiation into a narrow beam. The caesium-137 chloride radioactive source is the blue square, and gamma rays are represented by the beam emerging from the aperture. This was the radiation source involved in the Goiânia accident, containing about 93 grams of caesium-137 chloride.

Not only do the alkali metals react with water, but also with proton donors like alcohols and phenols, gaseous ammonia, and alkynes, the last demonstrating the phenomenal degree of their reactivity.

Schematic representation of the nitrogen cycle. Abiotic nitrogen fixation has been omitted.

Nitrogen fixation

5 links

Schematic representation of the nitrogen cycle. Abiotic nitrogen fixation has been omitted.
Nodules are visible on this broad bean root
A sectioned alder tree root nodule
Equipment for a study of nitrogen fixation by alpha rays (Fixed Nitrogen Research Laboratory, 1926)
Lightning heats the air around it breaking the bonds of starting the formation of nitrous acid.

Nitrogen fixation is a chemical process by which molecular nitrogen, with a strong triple covalent bond, in the air is converted into ammonia or related nitrogenous compounds, typically in soil or aquatic systems but also in industry.

Nitrogen trichloride

2 links

Chemical compound with the formula NCl3.

Chemical compound with the formula NCl3.

This yellow, oily, pungent-smelling and explosive liquid is most commonly encountered as a byproduct of chemical reactions between ammonia-derivatives and chlorine (for example, in swimming pools).