A stack of "fishbone" and Yagi–Uda television antennas
Animation of a half-wave dipole antenna radiating radio waves, showing the electric field lines. The antenna in the center is two vertical metal rods connected to a radio transmitter (not shown). The transmitter applies an alternating electric current to the rods, which charges them alternately positive (+) and negative (−). Loops of electric field leave the antenna and travel away at the speed of light; these are the radio waves. In this animation the action is shown slowed down enormously.
Electronic symbol for an antenna
Antennas of the Atacama Large Millimeter/submillimeter Array.
An automobile's whip antenna, a common example of an omnidirectional antenna.
Half-wave dipole antenna
Diagram of the electric fields ( blue ) and magnetic fields ( red ) radiated by a dipole antenna ( black rods) during transmission.
Cell phone base station antennas
Standing waves on a half wave dipole driven at its resonant frequency. The waves are shown graphically by bars of color ( red for voltage, V and blue for current, I ) whose width is proportional to the amplitude of the quantity at that point on the antenna.
Typical center-loaded mobile CB antenna with loading coil
Polar plots of the horizontal cross sections of a (virtual) Yagi-Uda-antenna. Outline connects points with 3 dB field power compared to an ISO emitter.
The wave reflected by earth can be considered as emitted by the image antenna.
The currents in an antenna appear as an image in opposite phase when reflected at grazing angles. This causes a phase reversal for waves emitted by a horizontally polarized antenna (center) but not for a vertically polarized antenna (left).
frame

In electromagnetics and antenna theory, the aperture of an antenna is defined as "A surface, near or on an antenna, on which it is convenient to makeassumptions regarding the field values for the purpose of computing fields at external points. The aperture is often taken as that portion of a plane surface near the antenna, perpendicular to the direction of maximum radiation, through which the major part of the radiation passes."

- Aperture (antenna)

For a given incoming flux, the power acquired by a receiving antenna is proportional to its effective area.

- Antenna (radio)
A stack of "fishbone" and Yagi–Uda television antennas

3 related topics with Alpha

Overall

Erdfunkstelle, a large parabolic satellite communications antenna in Raisting, Bavaria, Germany, the biggest facility for satellite communication in the world. It has a Cassegrain type feed.

Parabolic antenna

1 links

Erdfunkstelle, a large parabolic satellite communications antenna in Raisting, Bavaria, Germany, the biggest facility for satellite communication in the world. It has a Cassegrain type feed.
Parabolic antennas are based on the geometrical property of the paraboloid that the paths FP1Q1, FP2Q2, FP3Q3 are all the same length. So a spherical wavefront emitted by a feed antenna at the dish's focus F will be reflected into an outgoing plane wave L travelling parallel to the dish's axis VF.
Wire grid-type parabolic antenna used for MMDS data link at a frequency of 2.5-2.7 GHz. It is fed by a vertical dipole under the small aluminum reflector on the boom. It radiates vertically polarized microwaves.
Main types of parabolic antenna feeds.
Array of multiple feed horns on a German airport surveillance radar antenna to control the elevation angle of the beam
Effect of the feed antenna radiation pattern (small pumpkin-shaped surface) on spillover. Left: With a low gain feed antenna, significant parts of its radiation fall outside the dish. Right: With a higher gain feed, almost all its radiation is emitted within the angle of the dish.
Radiation pattern of a German parabolic antenna. The main lobe (top) is only a few degrees wide. The sidelobes are all at least 20 dB below (1/100 the power density of) the main lobe, and most are 30 dB below. (If this pattern was drawn with linear power levels instead of logarithmic dB levels, all lobes other than the main lobe would be much too small to see.)
The angle theta is normal to the aperture.

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves to the receiver in its focal point.

is a dimensionless parameter between 0 and 1 called the aperture efficiency. The aperture efficiency of typical parabolic antennas is 0.55 to 0.70.

Pyramidal microwave horn antenna, with a bandwidth of 0.8 to 18 GHz. A coaxial cable feedline attaches to the connector visible at top. This type is called a ridged horn; the curving fins visible inside the mouth of the horn increase the antenna's bandwidth.

Horn antenna

1 links

Pyramidal microwave horn antenna, with a bandwidth of 0.8 to 18 GHz. A coaxial cable feedline attaches to the connector visible at top. This type is called a ridged horn; the curving fins visible inside the mouth of the horn increase the antenna's bandwidth.
The first modern horn antenna in 1938 with inventor Wilmer L. Barrow.
Pyramidal horn antennas for a variety of frequencies. They have flanges at the top to attach to standard waveguides.
Corrugated conical horn antenna used as a feed horn on a Hughes Direcway home satellite dish. A transparent plastic sheet covers the horn mouth to keep out rain.
Horn antenna types
Stack of sectoral feed horns for air search radar antenna
Corrugated horn antenna with a bandwidth of 3.7 to 6 GHz designed to attach to SMA waveguide feedline. This was used as a feedhorn for a parabolic antenna on a British military base.
Exponential feed horn for 85 ft Cassegrain spacecraft communication antenna at NASA's Goldstone Deep Space Communications Complex.
Large pyramidal horn used in 1951 to detect the 21 cm (1.43 GHz) radiation from hydrogen gas in the Milky Way galaxy. Currently on display at the Green Bank Observatory in Green Bank, West Virginia, U.S.

A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam.

eA is a dimensionless parameter between 0 and 1 called the aperture efficiency,

Gain (antenna)

0 links

Antenna directive gain diagram.svg is proportional to the gain. An antenna's effective length is proportional to the square root of the antenna's gain for a particular frequency and radiation resistance. Due to reciprocity, the gain of any antenna when receiving is equal to its gain when transmitting.

Partial gain is calculated as power gain, but for a particular polarization.