A stack of "fishbone" and Yagi–Uda television antennas
Animation of a half-wave dipole antenna radiating radio waves, showing the electric field lines. The antenna in the center is two vertical metal rods connected to a radio transmitter (not shown). The transmitter applies an alternating electric current to the rods, which charges them alternately positive (+) and negative (−). Loops of electric field leave the antenna and travel away at the speed of light; these are the radio waves. In this animation the action is shown slowed down enormously.
Electronic symbol for an antenna
Antennas of the Atacama Large Millimeter/submillimeter Array.
An automobile's whip antenna, a common example of an omnidirectional antenna.
Half-wave dipole antenna
Diagram of the electric fields ( blue ) and magnetic fields ( red ) radiated by a dipole antenna ( black rods) during transmission.
Cell phone base station antennas
Standing waves on a half wave dipole driven at its resonant frequency. The waves are shown graphically by bars of color ( red for voltage, V and blue for current, I ) whose width is proportional to the amplitude of the quantity at that point on the antenna.
Typical center-loaded mobile CB antenna with loading coil
Polar plots of the horizontal cross sections of a (virtual) Yagi-Uda-antenna. Outline connects points with 3 dB field power compared to an ISO emitter.
The wave reflected by earth can be considered as emitted by the image antenna.
The currents in an antenna appear as an image in opposite phase when reflected at grazing angles. This causes a phase reversal for waves emitted by a horizontally polarized antenna (center) but not for a vertically polarized antenna (left).
frame

Forms of the reciprocity theorems are used in many electromagnetic applications, such as analyzing electrical networks and antenna systems.

- Reciprocity (electromagnetism)

Since antennas obey reciprocity the same radiation pattern applies to transmission as well as reception of radio waves.

- Antenna (radio)
A stack of "fishbone" and Yagi–Uda television antennas

1 related topic with Alpha

Overall

Three-dimensional antenna radiation patterns. The radial distance from the origin in any direction represents the strength of radiation emitted in that direction. The top shows the directive pattern of a horn antenna, the bottom shows the omnidirectional pattern of a simple vertical antenna.

Radiation pattern

0 links

Three-dimensional antenna radiation patterns. The radial distance from the origin in any direction represents the strength of radiation emitted in that direction. The top shows the directive pattern of a horn antenna, the bottom shows the omnidirectional pattern of a simple vertical antenna.
Typical polar radiation plot. Most antennas show a pattern of "lobes" or maxima of radiation. In a directive antenna, shown here, the largest lobe, in the desired direction of propagation, is called the "main lobe".  The other lobes are called "sidelobes" and usually represent radiation in unwanted directions.
A rectangular radiation plot, an alternative presentation method to a polar plot.

In the field of antenna design the term radiation pattern (or antenna pattern or far-field pattern) refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other source.

This is a consequence of the reciprocity theorem of electromagnetics and is proved below.