A report on Antenna (radio)

A stack of "fishbone" and Yagi–Uda television antennas
Animation of a half-wave dipole antenna radiating radio waves, showing the electric field lines. The antenna in the center is two vertical metal rods connected to a radio transmitter (not shown). The transmitter applies an alternating electric current to the rods, which charges them alternately positive (+) and negative (−). Loops of electric field leave the antenna and travel away at the speed of light; these are the radio waves. In this animation the action is shown slowed down enormously.
Electronic symbol for an antenna
Antennas of the Atacama Large Millimeter/submillimeter Array.
An automobile's whip antenna, a common example of an omnidirectional antenna.
Half-wave dipole antenna
Diagram of the electric fields ( blue ) and magnetic fields ( red ) radiated by a dipole antenna ( black rods) during transmission.
Cell phone base station antennas
Standing waves on a half wave dipole driven at its resonant frequency. The waves are shown graphically by bars of color ( red for voltage, V and blue for current, I ) whose width is proportional to the amplitude of the quantity at that point on the antenna.
Typical center-loaded mobile CB antenna with loading coil
Polar plots of the horizontal cross sections of a (virtual) Yagi-Uda-antenna. Outline connects points with 3 dB field power compared to an ISO emitter.
The wave reflected by earth can be considered as emitted by the image antenna.
The currents in an antenna appear as an image in opposite phase when reflected at grazing angles. This causes a phase reversal for waves emitted by a horizontally polarized antenna (center) but not for a vertically polarized antenna (left).
frame

Antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver.

- Antenna (radio)
A stack of "fishbone" and Yagi–Uda television antennas

66 related topics with Alpha

Overall

UHF half-wave dipole

Dipole antenna

19 links

UHF half-wave dipole
Dipole antenna used by the radar altimeter in an airplane
Animated diagram of a half-wave dipole antenna receiving a radio wave. The antenna consists of two metal rods connected to a receiver R. The electric field ( E, green arrows ) of the incoming wave pushes the electrons in the rods back and forth, charging the ends alternately positive  (+)  and negative  (−) .  Since the length of the antenna is one half the wavelength of the wave, the oscillating field induces standing waves of voltage ( V, represented by red band ) and current in the rods. The oscillating currents (black arrows) flow down the transmission line and through the receiver (represented by the resistance R).
Cage dipole antennas in the Ukrainian UTR-2 radio telescope. The 8 m by 1.8 m diameter galvanized steel wire dipoles have a bandwidth of 8–33 MHz.
Real (black) and imaginary (blue) parts of the dipole feedpoint impedance versus total length in wavelengths, assuming a conductor diameter of 0.001 wavelengths
Feedpoint impedance of (near-) half-wave dipoles versus electrical length in wavelengths. Black: radiation resistance; blue: reactance for 4 different values of conductor diameter
Length reduction factor for a half-wave dipole to achieve electrical resonance (purely resistive feedpoint impedance). Calculated using the Induced EMF method, an approximation that breaks down at larger conductor diameters (dashed portion of graph).
"Rabbit-ears" VHF television antenna (the small loop is a separate UHF antenna).
Collinear folded dipole array
A reflective array antenna for radar consisting of numerous dipoles fed in-phase (thus realizing a broadside array) in front of a large reflector (horizontal wires) to make it uni-directional.

In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna.

A telecommunications tower with a variety of dish antennas for microwave relay links on Frazier Peak, Ventura County, California. The apertures of the dishes are covered by plastic sheets (radomes) to keep out moisture.

Microwave

15 links

Form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively.

Form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively.

A telecommunications tower with a variety of dish antennas for microwave relay links on Frazier Peak, Ventura County, California. The apertures of the dishes are covered by plastic sheets (radomes) to keep out moisture.
The atmospheric attenuation of microwaves and far infrared radiation in dry air with a precipitable water vapor level of 0.001 mm. The downward spikes in the graph correspond to frequencies at which microwaves are absorbed more strongly. This graph includes a range of frequencies from 0 to 1 THz; the microwaves are the subset in the range between 0.3 and 300 gigahertz.
Waveguide is used to carry microwaves. Example of waveguides and a diplexer in an air traffic control radar
Disassembled radar speed gun. The grey assembly attached to the end of the copper-colored horn antenna is the Gunn diode which generates the microwaves.
A satellite dish on a residence, which receives satellite television over a Ku band 12–14 GHz microwave beam from a direct broadcast communications satellite in a geostationary orbit 35,700 kilometres (22,000 miles) above the Earth
The parabolic antenna (lower curved surface) of an ASR-9 airport surveillance radar which radiates a narrow vertical fan-shaped beam of 2.7–2.9 GHz (S band) microwaves to locate aircraft in the airspace surrounding an airport.
Small microwave oven on a kitchen counter
Microwaves are widely used for heating in industrial processes. A microwave tunnel oven for softening plastic rods prior to extrusion.
Absorption wavemeter for measuring in the Ku band.
1.2 GHz microwave spark transmitter (left) and coherer receiver (right) used by Guglielmo Marconi during his 1895 experiments had a range of 6.5 km
ku band microstrip circuit used in satellite television dish.
Heinrich Hertz's 450 MHz spark transmitter, 1888, consisting of 23 cm dipole and spark gap at focus of parabolic reflector
Jagadish Chandra Bose in 1894 was the first person to produce millimeter waves; his spark oscillator (in box, right) generated 60 GHz (5 mm) waves using 3 mm metal ball resonators.
Microwave spectroscopy experiment by John Ambrose Fleming in 1897 showing refraction of 1.4 GHz microwaves by paraffin prism, duplicating earlier experiments by Bose and Righi.
Augusto Righi's 12 GHz spark oscillator and receiver, 1895
Antennas of 1931 experimental 1.7 GHz microwave relay link across the English Channel.
Experimental 700 MHz transmitter 1932 at Westinghouse labs transmits voice over a mile.
Southworth (at left) demonstrating waveguide at IRE meeting in 1938, showing 1.5 GHz microwaves passing through the 7.5 m flexible metal hose registering on a diode detector.
The first modern horn antenna in 1938 with inventor Wilmer L. Barrow
thumb|Randall and Boot's prototype cavity magnetron tube at the University of Birmingham, 1940. In use the tube was installed between the poles of an electromagnet
First commercial klystron tube, by General Electric, 1940, sectioned to show internal construction
British Mk. VIII, the first microwave air intercept radar, in nose of British fighter. Microwave radar, powered by the new magnetron tube, significantly shortened World War II.
Mobile US Army microwave relay station 1945 demonstrating relay systems using frequencies from 100 MHz to 4.9 GHz which could transmit up to 8 phone calls on a beam.

Their short wavelength also allows narrow beams of microwaves to be produced by conveniently small high gain antennas from a half meter to 5 meters in diameter.

A variety of radio antennas on Sandia Peak near Albuquerque, New Mexico, US

Radio

12 links

Technology of signaling and communicating using radio waves.

Technology of signaling and communicating using radio waves.

A variety of radio antennas on Sandia Peak near Albuquerque, New Mexico, US
Radio communication. Information such as sound is converted by a transducer such as a microphone to an electrical signal, which modulates a radio wave produced by the transmitter. A receiver intercepts the radio wave and extracts the information-bearing modulation signal, which is converted back to a human usable form with another transducer such as a loudspeaker.
Comparison of AM and FM modulated radio waves
Frequency spectrum of a typical modulated AM or FM radio signal. It consists of a component C at the carrier wave frequency f_c with the information (modulation) contained in two narrow bands of frequencies called sidebands (SB) just above and below the carrier frequency.
Satellite television dish on a residence
Satellite phones, showing the large antennas needed to communicate with the satellite
Firefighter using walkie-talkie
VHF marine radio on a ship
Parabolic antennas of microwave relay links on tower in Australia
RFID tag from a DVD
Satellite Communications Center Dubna in Russia
Communications satellite belonging to Azerbaijan
Military air traffic controller on US Navy aircraft carrier monitors aircraft on radar screen
ASR-8 airport surveillance radar antenna. It rotates once every 4.8 seconds. The rectangular antenna on top is the secondary radar.
Rotating marine radar antenna on a ship
A personal navigation assistant GPS receiver in a car, which can give driving directions to a destination.
EPIRB emergency locator beacon on a ship
Wildlife officer tracking radio-tagged mountain lion
US Air Force MQ-1 Predator drone flown remotely by a pilot on the ground
Remote keyless entry fob for a car
Quadcopter, a popular remote-controlled toy
Television receiver

They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver.

A portable battery-powered AM/FM broadcast receiver, used to listen to audio broadcast by local radio stations.

Radio receiver

11 links

Electronic device that receives radio waves and converts the information carried by them to a usable form.

Electronic device that receives radio waves and converts the information carried by them to a usable form.

A portable battery-powered AM/FM broadcast receiver, used to listen to audio broadcast by local radio stations.
A modern communications receiver, used in two-way radio communication stations to talk with remote locations by shortwave radio.
Girl listening to vacuum tube radio in the 1940s. During the golden age of radio, 1925–1955, families gathered to listen to the home radio receiver in the evening
A bedside clock radio that combines a radio receiver with an alarm clock
Symbol for an antenna
Symbol for a bandpass filter used in block diagrams of radio receivers
Symbol for an amplifier
Symbol for a demodulator
Envelope detector circuit
How an envelope detector works
Block diagram of a tuned radio frequency receiver. To achieve enough selectivity to reject stations on adjacent frequencies, multiple cascaded bandpass filter stages had to be used. The dotted line indicates that the bandpass filters must be tuned together.
Block diagram of a superheterodyne receiver. The dotted line indicates that the RF filter and local oscillator must be tuned in tandem.
Block diagram of a dual-conversion superheterodyne receiver
Guglielmo Marconi, who built the first radio receivers, with his early spark transmitter (right) and coherer receiver (left) from the 1890s. The receiver records the Morse code on paper tape
Generic block diagram of an unamplified radio receiver from the wireless telegraphy era
Example of transatlantic radiotelegraph message recorded on paper tape by a siphon recorder at RCA's New York receiving center in 1920. The translation of the Morse code is given below the tape.
Coherer from 1904 as developed by Marconi.
Experiment to use human brain as a radio wave detector, 1902
Magnetic detector
Electrolytic detector
A galena cat's whisker detector from a 1920s crystal radio
Marconi's inductively coupled coherer receiver from his controversial April 1900 "four circuit" patent no. 7,777.
Radio receiver with Poulsen "tikker" consisting of a commutator disk turned by a motor to interrupt the carrier.
Fessenden's heterodyne radio receiver circuit
Unlike today, when almost all radios use a variation of the superheterodyne design, during the 1920s vacuum tube radios used a variety of competing circuits.
During the "Golden Age of Radio" (1920 to 1950), families gathered to listen to the home radio in the evening, such as this Zenith console model 12-S-568 from 1938, a 12-tube superheterodyne with pushbutton tuning and 12-inch cone speaker.
De Forest's first commercial Audion receiver, the RJ6 which came out in 1914. The Audion tube was always mounted upside down, with its delicate filament loop hanging down, so it did not sag and touch the other electrodes in the tube.
Block diagram of regenerative receiver
Circuit of single tube Armstrong regenerative receiver
Armstrong presenting his superregenerative receiver, June 28, 1922, Columbia University
Hazeltine's prototype Neutrodyne receiver, presented at a March 2, 1923 meeting of the Radio Society of America at Columbia University.
Block diagram of simple single tube reflex receiver
The first superheterodyne receiver built at Armstrong's Signal Corps laboratory in Paris during World War I. It is constructed in two sections, the mixer and local oscillator (left) and three IF amplification stages and a detector stage (right). The intermediate frequency was 75 kHz.
A Zenith transistor based portable radio receiver
A modern smartphone has several RF CMOS digital radio transmitters and receivers to connect to different devices, including a cellular receiver, wireless modem, Bluetooth modem, and GPS receiver.

It is used with an antenna.

Animation of a half-wave dipole antenna radiating radio waves, showing the electric field lines. The antenna in the center is two vertical metal rods connected to a radio transmitter (not shown). The transmitter applies an alternating electric current to the rods, which charges them alternately positive (+) and negative (−). Loops of electric field leave the antenna and travel away at the speed of light; these are the radio waves. In this animation the action is shown slowed down enormously.

Radio wave

11 links

Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below.

Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below.

Animation of a half-wave dipole antenna radiating radio waves, showing the electric field lines. The antenna in the center is two vertical metal rods connected to a radio transmitter (not shown). The transmitter applies an alternating electric current to the rods, which charges them alternately positive (+) and negative (−). Loops of electric field leave the antenna and travel away at the speed of light; these are the radio waves. In this animation the action is shown slowed down enormously.
Diagram of the electric fields (E) and magnetic fields (H) of radio waves emitted by a monopole radio transmitting antenna (small dark vertical line in the center). The E and H fields are perpendicular, as implied by the phase diagram in the lower right.
Animated diagram of a half-wave dipole antenna receiving a radio wave. The antenna consists of two metal rods connected to a receiver R. The electric field ( E, green arrows ) of the incoming wave pushes the electrons in the rods back and forth, charging the ends alternately positive (+) and negative (−) . Since the length of the antenna is one half the wavelength of the wave, the oscillating field induces standing waves of voltage ( V, represented by red band ) and current in the rods. The oscillating currents (black arrows) flow down the transmission line and through the receiver (represented by the resistance R).

Radio waves are generated artificially by an electronic device called a transmitter, which is connected to an antenna which radiates the waves.

Erdfunkstelle, a large parabolic satellite communications antenna in Raisting, Bavaria, Germany, the biggest facility for satellite communication in the world. It has a Cassegrain type feed.

Parabolic antenna

10 links

Erdfunkstelle, a large parabolic satellite communications antenna in Raisting, Bavaria, Germany, the biggest facility for satellite communication in the world. It has a Cassegrain type feed.
Parabolic antennas are based on the geometrical property of the paraboloid that the paths FP1Q1, FP2Q2, FP3Q3 are all the same length. So a spherical wavefront emitted by a feed antenna at the dish's focus F will be reflected into an outgoing plane wave L travelling parallel to the dish's axis VF.
Wire grid-type parabolic antenna used for MMDS data link at a frequency of 2.5-2.7 GHz. It is fed by a vertical dipole under the small aluminum reflector on the boom. It radiates vertically polarized microwaves.
Main types of parabolic antenna feeds.
Array of multiple feed horns on a German airport surveillance radar antenna to control the elevation angle of the beam
Effect of the feed antenna radiation pattern (small pumpkin-shaped surface) on spillover. Left: With a low gain feed antenna, significant parts of its radiation fall outside the dish. Right: With a higher gain feed, almost all its radiation is emitted within the angle of the dish.
Radiation pattern of a German parabolic antenna. The main lobe (top) is only a few degrees wide. The sidelobes are all at least 20 dB below (1/100 the power density of) the main lobe, and most are 30 dB below. (If this pattern was drawn with linear power levels instead of logarithmic dB levels, all lobes other than the main lobe would be much too small to see.)
The angle theta is normal to the aperture.

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves to the receiver in its focal point.

A typical mast radiator monopole antenna of an AM radio station in Chapel Hill, North Carolina. The mast itself is connected to the transmitter and radiates the radio waves. It is mounted on a ceramic insulator to isolate it from the ground. The other terminal of the transmitter is connected to a ground system consisting of cables buried under the field.

Monopole antenna

11 links

A typical mast radiator monopole antenna of an AM radio station in Chapel Hill, North Carolina. The mast itself is connected to the transmitter and radiates the radio waves. It is mounted on a ceramic insulator to isolate it from the ground. The other terminal of the transmitter is connected to a ground system consisting of cables buried under the field.
Showing the monopole antenna has the same radiation pattern over perfect ground as a dipole in free space with twice the voltage
Vertical radiation patterns of ideal monopole antennas over a perfect infinite ground. The distance of the line from the origin at a given elevation angle is proportional to the power density radiated at that angle.
Multi-lobed radiation pattern of 3⁄2 wavelength monopole. Monopole antennas up to 1⁄2 wavelength long have a single "lobe", with field strength declining monotonically from a maximum in the horizontal direction, but longer monopoles have more complicated patterns with several conical "lobes" (radiation maxima) directed at angles into the sky.
VHF ground plane antenna, a type of monopole antenna used at high frequencies. The three conductors projecting downward are the ground plane

A monopole antenna is a class of radio antenna consisting of a straight rod-shaped conductor, often mounted perpendicularly over some type of conductive surface, called a ground plane.

Commercial FM broadcasting transmitter at radio station WDET-FM, Wayne State University, Detroit, USA. It broadcasts at 101.9 MHz with a radiated power of 48 kW.

Transmitter

8 links

Commercial FM broadcasting transmitter at radio station WDET-FM, Wayne State University, Detroit, USA. It broadcasts at 101.9 MHz with a radiated power of 48 kW.
A radio transmitter is usually part of a radio communication system which uses electromagnetic waves (radio waves) to transport information (in this case sound) over a distance.
Animation of a half-wave dipole antenna transmitting radio waves, showing the electric field lines. The antenna in the center is two vertical metal rods, with an alternating current applied at its center from a radio transmitter (not shown). The voltage charges the two sides of the antenna alternately positive  (+)  and negative   (−) .  Loops of electric field (black lines) leave the antenna and travel away at the speed of light; these are the radio waves.  This animation shows the action slowed enormously
Hertz discovering radio waves in 1887 with his first primitive radio transmitter (background).
Guglielmo Marconi's spark gap transmitter, with which he performed the first experiments in practical Morse code radiotelegraphy communication in 1895-1897
High power spark gap radiotelegraphy transmitter in Australia around 1910.
1 MW US Navy Poulsen arc transmitter which generated continuous waves using an electric arc in a magnetic field, a technology used for a brief period from 1903 until vacuum tubes took over in the 20s
An Alexanderson alternator, a huge rotating machine used as a radio transmitter at very low frequency from about 1910 until World War 2
One of the first vacuum tube AM radio transmitters, built by Lee De Forest in 1914. The early Audion (triode) tube is visible at right.
One of the BBC's first broadcast transmitters, early 1920s, London. The 4 triode tubes, connected in parallel to form an oscillator, each produced around 4 kilowatts with 12 thousand volts on their anodes.
Armstrong's first experimental FM broadcast transmitter W2XDG, in the Empire State Building, New York City, used for secret tests 1934–1935. It transmitted on 41 MHz at a power of 2 kW.
Transmitter assembly of a 20 kW, 9.375 GHz air traffic control radar, 1947. The magnetron tube mounted between two magnets (right) produces microwaves which pass from the aperture (left) into a waveguide which conducts them to the dish antenna.

In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna.

Three-dimensional antenna radiation patterns. The radial distance from the origin in any direction represents the strength of radiation emitted in that direction. The top shows the directive pattern of a horn antenna, the bottom shows the omnidirectional pattern of a simple vertical antenna.

Radiation pattern

8 links

Three-dimensional antenna radiation patterns. The radial distance from the origin in any direction represents the strength of radiation emitted in that direction. The top shows the directive pattern of a horn antenna, the bottom shows the omnidirectional pattern of a simple vertical antenna.
Typical polar radiation plot. Most antennas show a pattern of "lobes" or maxima of radiation. In a directive antenna, shown here, the largest lobe, in the desired direction of propagation, is called the "main lobe".  The other lobes are called "sidelobes" and usually represent radiation in unwanted directions.
A rectangular radiation plot, an alternative presentation method to a polar plot.

In the field of antenna design the term radiation pattern (or antenna pattern or far-field pattern) refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other source.

A modern high-gain UHF Yagi television antenna with 17 directors, and one reflector (made of four rods) shaped as a corner reflector.

Yagi–Uda antenna

7 links

A modern high-gain UHF Yagi television antenna with 17 directors, and one reflector (made of four rods) shaped as a corner reflector.
Drawing of Yagi–Uda VHF television antenna from 1954, used for analog channels 2–4, 54–72 MHz (USA channels). It has five elements: three directors (to left) one reflector (to right) and a driven element which is a folded dipole (double rod) to match the 300 Ω twin lead feedline. The beam direction (direction of greatest sensitivity) is to the left.
Quartet of two-dipole Yagi arrays '(Hirschgeweih) of the German FuG 220 VHF-band radar on the nose of a late-World War II Bf 110 night fighter aircraft.
Yagi–Uda antenna with a reflector (left), half-wave driven element (centre), and director (right). Exact spacings and element lengths vary somewhat according to specific designs.
A portable Yagi–Uda antenna for use at 144 MHz (2 m), with segments of yellow tape-measure ribbon for the arms of the driven and parasitic elements.
Two Yagi–Uda antennas on a single mast. The top one includes a corner reflector and three stacked Yagis fed in phase in order to increase gain in the horizontal direction (by cancelling power radiated toward the ground or sky). The lower antenna is oriented for vertical polarization, with a much lower resonant frequency.
A Nakajima J1N1-S night fighter with quadruple Yagi radar transceiver antennas
Close-up of Yagi arrays of the ASV Mark II radar fitted beneath a Bristol Beaufort aircraft for anti-submarine warfare.
How the antenna works. The radio waves from each element are emitted with a phase delay, so that the individual waves emitted in the forward direction (up) are in phase, while the waves in the reverse direction are out of phase. Therefore, the forward waves add together, (constructive interference) enhancing the power in that direction, while the backward waves partially cancel each other (destructive interference), thereby reducing the power emitted in that direction.
Illustration of forward gain of a two element Yagi–Uda array using only a driven element (left) and a director (right). The wave (green) from the driven element excites a current in the passive director which reradiates a wave (blue) having a particular phase shift (see explanation in text, note that the dimensions are not to scale with the numbers in the text). The addition of these waves (bottom) is increased in the forward direction, but leads to partial cancellation in the reverse direction.

A Yagi–Uda antenna or simply Yagi antenna, is a directional antenna consisting of two or more parallel resonant antenna elements in an end-fire array; these elements are most often metal rods acting as half-wave dipoles.