A report on AtomProton and Chemistry

Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)
The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.
An oil painting of a chemist (Ana Kansky, painted by Henrika Šantel in 1932)
The Geiger–Marsden experiment:
Left: Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection.
Right: Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus.
Ernest Rutherford at the first Solvay Conference, 1911
Laboratory, Institute of Biochemistry, University of Cologne in Germany.
The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete.
Proton detected in an isopropanol cloud chamber
Solutions of substances in reagent bottles, including ammonium hydroxide and nitric acid, illuminated in different colors
The binding energy needed for a nucleon to escape the nucleus, for various isotopes
Protium, the most common isotope of hydrogen, consists of one proton and one electron (it has no neutrons). The term "hydrogen ion" implies that that H-atom has lost its one electron, causing only a proton to remain. Thus, in chemistry, the terms "proton" and "hydrogen ion" (for the protium isotope) are used synonymously
A diagram of an atom based on the Bohr model
A potential well, showing, according to classical mechanics, the minimum energy V(x) needed to reach each position x. Classically, a particle with energy E is constrained to a range of positions between x1 and x2.
Standard form of the periodic table of chemical elements. The colors represent different categories of elements
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
Carbon dioxide (CO2), an example of a chemical compound
This diagram shows the half-life (T½) of various isotopes with Z protons and N neutrons.
A ball-and-stick representation of the caffeine molecule (C8H10N4O2).
These electron's energy levels (not to scale) are sufficient for ground states of atoms up to cadmium (5s2 4d10) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.
A 2-D structural formula of a benzene molecule (C6H6)
An example of absorption lines in a spectrum
Diagram showing relationships among the phases and the terms used to describe phase changes.
Graphic illustrating the formation of a Bose–Einstein condensate
An animation of the process of ionic bonding between sodium (Na) and chlorine (Cl) to form sodium chloride, or common table salt. Ionic bonding involves one atom taking valence electrons from another (as opposed to sharing, which occurs in covalent bonding)
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. The surface atoms deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them (See surface reconstruction).
In the methane molecule (CH4), the carbon atom shares a pair of valence electrons with each of the four hydrogen atoms. Thus, the octet rule is satisfied for C-atom (it has eight electrons in its valence shell) and the duet rule is satisfied for the H-atoms (they have two electrons in their valence shells).
Periodic table showing the origin of each element. Elements from carbon up to sulfur may be made in small stars by the alpha process. Elements beyond iron are made in large stars with slow neutron capture (s-process). Elements heavier than iron may be made in neutron star mergers or supernovae after the r-process.
Emission spectrum of iron
During chemical reactions, bonds between atoms break and form, resulting in different substances with different properties. In a blast furnace, iron oxide, a compound, reacts with carbon monoxide to form iron, one of the chemical elements, and carbon dioxide.
The crystal lattice structure of potassium chloride (KCl), a salt which is formed due to the attraction of K+ cations and Cl− anions. Note how the overall charge of the ionic compound is zero.
Hydrogen bromide exists in the gas phase as a diatomic molecule
Democritus' atomist philosophy was later adopted by Epicurus (341–270 BCE).
15th-century artistic impression of Jābir ibn Hayyān (Geber), a Perso-Arab alchemist and pioneer in organic chemistry.
Antoine-Laurent de Lavoisier is considered the "Father of Modern Chemistry".
In his periodic table, Dmitri Mendeleev predicted the existence of 7 new elements, and placed all 60 elements known at the time in their correct places.
Top: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed. 
Bottom: Observed results: a small portion of the particles were deflected, indicating a small, concentrated charge.

It is a natural science that covers the elements that make up matter to the compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.

- Chemistry

One or more protons are present in the nucleus of every atom.

- Proton

The nucleus is made of one or more protons and a number of neutrons.

- Atom

Chemistry is the discipline that studies these changes.

- Atom

The nucleus is made up of positively charged protons and uncharged neutrons (together called nucleons), while the electron cloud consists of negatively charged electrons which orbit the nucleus.

- Chemistry

In chemistry, the number of protons in the nucleus of an atom is known as the atomic number, which determines the chemical element to which the atom belongs.

- Proton
Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)

5 related topics with Alpha

Overall

Hydrogen atomic orbitals at different energy levels. The more opaque areas are where one is most likely to find an electron at any given time.

Electron

3 links

Subatomic particle whose electric charge is negative one elementary charge.

Subatomic particle whose electric charge is negative one elementary charge.

Hydrogen atomic orbitals at different energy levels. The more opaque areas are where one is most likely to find an electron at any given time.
A beam of electrons deflected in a circle by a magnetic field
J. J. Thomson
Robert Millikan
The Bohr model of the atom, showing states of an electron with energy quantized by the number n. An electron dropping to a lower orbit emits a photon equal to the energy difference between the orbits.
In quantum mechanics, the behavior of an electron in an atom is described by an orbital, which is a probability distribution rather than an orbit. In the figure, the shading indicates the relative probability to "find" the electron, having the energy corresponding to the given quantum numbers, at that point.
Standard Model of elementary particles. The electron (symbol e) is on the left.
Example of an antisymmetric wave function for a quantum state of two identical fermions in a 1-dimensional box. If the particles swap position, the wave function inverts its sign.
A schematic depiction of virtual electron–positron pairs appearing at random near an electron (at lower left)
A particle with charge q (at left) is moving with velocity v through a magnetic field B that is oriented toward the viewer. For an electron, q is negative so it follows a curved trajectory toward the top.
Here, Bremsstrahlung is produced by an electron e deflected by the electric field of an atomic nucleus. The energy change E2 − E1 determines the frequency f of the emitted photon.
Probability densities for the first few hydrogen atom orbitals, seen in cross-section. The energy level of a bound electron determines the orbital it occupies, and the color reflects the probability of finding the electron at a given position.
A lightning discharge consists primarily of a flow of electrons. The electric potential needed for lightning can be generated by a triboelectric effect.
Lorentz factor as a function of velocity. It starts at value 1 and goes to infinity as v approaches c.
Pair production of an electron and positron, caused by the close approach of a photon with an atomic nucleus. The lightning symbol represents an exchange of a virtual photon, thus an electric force acts. The angle between the particles is very small.
An extended air shower generated by an energetic cosmic ray striking the Earth's atmosphere
Aurorae are mostly caused by energetic electrons precipitating into the atmosphere.
During a NASA wind tunnel test, a model of the Space Shuttle is targeted by a beam of electrons, simulating the effect of ionizing gases during re-entry.

The electron's mass is approximately 1836 times smaller than that of the proton.

Electrons play an essential role in numerous physical phenomena, such as electricity, magnetism, chemistry and thermal conductivity, and they also participate in gravitational, electromagnetic and weak interactions.

The Coulomb force interaction between the positive protons within atomic nuclei and the negative electrons without, allows the composition of the two known as atoms.

Moseley in 1914

Henry Moseley

2 links

Moseley in 1914
Blue plaque erected by the Royal Society of Chemistry on the Townsend Building of Oxford's Clarendon Laboratory, commemorating Moseley's work on X-rays emitted by elements

Henry Gwyn Jeffreys Moseley (23 November 1887 – 10 August 1915) was an English physicist, whose contribution to the science of physics was the justification from physical laws of the previous empirical and chemical concept of the atomic number.

That theory refined Ernest Rutherford's and Antonius van den Broek's model, which proposed that the atom contains in its nucleus a number of positive nuclear charges that is equal to its (atomic) number in the periodic table.

(This was later to be the basis of the Aufbau principle in atomic studies.) As noted by Bohr, Moseley's law provided a reasonably complete experimental set of data that supported the (new from 1911) conception by Ernest Rutherford and Antonius van den Broek of the atom, with a positively charged nucleus surrounded by negatively charged electrons in which the atomic number is understood to be the exact physical number of positive charges (later discovered and called protons) in the central atomic nuclei of the elements.

435x435px

Periodic table

1 links

Tabular display of the chemical elements.

Tabular display of the chemical elements.

435x435px
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
Idealized order of shell-filling (most accurate for n  ≲ 4.)
Trend in atomic radii
Graph of first ionisation energies of the elements in electronvolts (predictions used for elements 105–118)
Trend in electron affinities
Flowing liquid mercury. Its liquid state at room temperature is a result of special relativity.
A periodic table colour-coded to show some commonly used sets of similar elements. The categories and their boundaries differ somewhat between sources. Alkali metals
 Alkaline earth metals
 Lanthanides
 Actinides
 Transition metals Other metals
 Metalloids
 Other nonmetals
 Halogens
 Noble gases
Mendeleev's 1869 periodic table
Mendeleev's 1871 periodic table
Dmitri Mendeleev
Henry Moseley
Periodic table of van den Broek
Glenn T. Seaborg
One possible form of the extended periodic table to element 172, suggested by Finnish chemist Pekka Pyykkö. Deviations from the Madelung order (8s < < 6f < 7d < 8p) begin to appear at elements 139 and 140, though for the most part it continues to hold approximately.
Otto Theodor Benfey's spiral periodic table (1964)
Iron, a metal
Sulfur, a nonmetal
Arsenic, an element often called a semi-metal or metalloid

It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of chemistry.

The smallest constituents of all normal matter are known as atoms.

Atoms consist of a small positively charged nucleus, made of positively charged protons and uncharged neutrons, surrounded by a cloud of negatively charged electrons; the charges cancel out, so atoms are neutral.

Hydrogen atom (center) contains a single proton and a single electron. Removal of the electron gives a cation (left), whereas the addition of an electron gives an anion (right). The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only charge-+1 cation that has no electrons, but even cations that (unlike hydrogen) retain one or more electrons are still smaller than the neutral atoms or molecules from which they are derived.

Ion

1 links

Hydrogen atom (center) contains a single proton and a single electron. Removal of the electron gives a cation (left), whereas the addition of an electron gives an anion (right). The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only charge-+1 cation that has no electrons, but even cations that (unlike hydrogen) retain one or more electrons are still smaller than the neutral atoms or molecules from which they are derived.
Schematic of an ion chamber, showing drift of ions. Electrons drift faster than positive ions due to their much smaller mass.
Avalanche effect between two electrodes. The original ionization event liberates one electron, and each subsequent collision liberates a further electron, so two electrons emerge from each collision: the ionizing electron and the liberated electron.
Equivalent notations for an iron atom (Fe) that lost two electrons, referred to as ferrous.
Mixed Roman numerals and charge notations for the uranyl ion. The oxidation state of the metal is shown as superscripted Roman numerals, whereas the charge of the entire complex is shown by the angle symbol together with the magnitude and sign of the net charge.
An electrostatic potential map of the nitrate ion . The 3-dimensional shell represents a single arbitrary isopotential.

An ion is an atom or molecule with a net electrical charge.

The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention.

Atoms can be ionized by bombardment with radiation, but the more usual process of ionization encountered in chemistry is the transfer of electrons between atoms or molecules.

Ernest Rutherford

Ernest Rutherford

1 links

New Zealand physicist who came to be known as the father of nuclear physics.

New Zealand physicist who came to be known as the father of nuclear physics.

Ernest Rutherford
Rutherford in 1892, aged 21
Lord Rutherford's grave in Westminster Abbey
Ernest Rutherford at McGill University in 1905
Top: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed. 
Bottom: Observed results: a small portion of the particles were deflected, indicating a small, concentrated charge. Diagram is not to scale; in reality the nucleus is vastly smaller than the electron shell.
A plaque commemorating Rutherford's presence at the University of Manchester
nitrogen plasma
A statue of a young Ernest Rutherford at his memorial in Brightwater, New Zealand.
A Russian postage depicting Scattering diagram
Radioaktive Substanzen und ihre Strahlungen, 1913

In 1911, although he could not prove that it was positive or negative, he theorized that atoms have their charge concentrated in a very small nucleus, and thereby pioneered the Rutherford model of the atom, through his discovery and interpretation of Rutherford scattering by the gold foil experiment of Hans Geiger and Ernest Marsden.

As a result, he discovered the emission of a subatomic particle which, in 1919, he called the "hydrogen atom" but, in 1920, he more accurately named the proton.

Rutherford Award at Thomas Carr College for excellence in Victorian Certificate of Education chemistry, Australia.