A report on ProtonAtom and Deuterium

The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.
Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)
Ernest Rutherford at the first Solvay Conference, 1911
The Geiger–Marsden experiment:
Left: Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection.
Right: Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus.
Deuterium discharge tube
Proton detected in an isopropanol cloud chamber
The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete.
Ionized deuterium in a fusor reactor giving off its characteristic pinkish-red glow
Protium, the most common isotope of hydrogen, consists of one proton and one electron (it has no neutrons). The term "hydrogen ion" implies that that H-atom has lost its one electron, causing only a proton to remain. Thus, in chemistry, the terms "proton" and "hydrogen ion" (for the protium isotope) are used synonymously
The binding energy needed for a nucleon to escape the nucleus, for various isotopes
Emission spectrum of an ultraviolet deuterium arc lamp
A potential well, showing, according to classical mechanics, the minimum energy V(x) needed to reach each position x. Classically, a particle with energy E is constrained to a range of positions between x1 and x2.
Harold Urey, deuterium's discoverer
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
The "Sausage" device casing of the Ivy Mike H bomb, attached to instrumentation and cryogenic equipment. The 20-ft-tall bomb held a cryogenic Dewar flask with room for 160 kg of liquid deuterium.
This diagram shows the half-life (T½) of various isotopes with Z protons and N neutrons.
These electron's energy levels (not to scale) are sufficient for ground states of atoms up to cadmium (5s2 4d10) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.
An example of absorption lines in a spectrum
Graphic illustrating the formation of a Bose–Einstein condensate
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. The surface atoms deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them (See surface reconstruction).
Periodic table showing the origin of each element. Elements from carbon up to sulfur may be made in small stars by the alpha process. Elements beyond iron are made in large stars with slow neutron capture (s-process). Elements heavier than iron may be made in neutron star mergers or supernovae after the r-process.

The nucleus of a deuterium atom, called a deuteron, contains one proton and one neutron, whereas the far more common protium has no neutrons in the nucleus.

- Deuterium

One or more protons are present in the nucleus of every atom.

- Proton

The nucleus is made of one or more protons and a number of neutrons.

- Atom

The nuclei of the heavy hydrogen isotopes deuterium and tritium contain one proton bound to one and two neutrons, respectively.

- Proton

For example, it requires only 13.6 eV to strip a ground-state electron from a hydrogen atom, compared to 2.23 million eV for splitting a deuterium nucleus.

- Atom
The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.

7 related topics with Alpha

Overall

The quark content of the neutron. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.

Neutron

6 links

The quark content of the neutron. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.
Nuclear fission caused by absorption of a neutron by uranium-235. The heavy nuclide fragments into lighter components and additional neutrons.
Models depicting the nucleus and electron energy levels in hydrogen, helium, lithium, and neon atoms. In reality, the diameter of the nucleus is about 100,000 times smaller than the diameter of the atom.
A schematic of the nucleus of an atom indicating radiation, the emission of a fast electron from the nucleus (the accompanying antineutrino is omitted). In the Rutherford model for the nucleus, red spheres were protons with positive charge and blue spheres were protons tightly bound to an electron with no net charge. 
The inset shows beta decay of a free neutron as it is understood today; an electron and antineutrino are created in this process.
The Feynman diagram for beta decay of a neutron into a proton, electron, and electron antineutrino via an intermediate heavy W boson
The leading-order Feynman diagram for decay of a proton into a neutron, positron, and electron neutrino via an intermediate boson.
Institut Laue–Langevin (ILL) in Grenoble, France – a major neutron research facility.
Cold neutron source providing neutrons at about the temperature of liquid hydrogen
The fusion reaction rate increases rapidly with temperature until it maximizes and then gradually drops off. The D–T rate peaks at a lower temperature (about 70 keV, or 800 million kelvins) and at a higher value than other reactions commonly considered for fusion energy.
Transmutation flow in light water reactor, which is a thermal-spectrum reactor

The neutron is a subatomic particle, symbol or, which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton.

Protons and neutrons constitute the nuclei of atoms.

The nuclei of the heavy hydrogen isotopes deuterium (D or 2H) and tritium (T or 3H) contain one proton bound to one and two neutrons, respectively.

The Space Shuttle Main Engine burnt hydrogen with oxygen, producing a nearly invisible flame at full thrust.

Hydrogen

4 links

Chemical element with the symbol H and atomic number 1.

Chemical element with the symbol H and atomic number 1.

The Space Shuttle Main Engine burnt hydrogen with oxygen, producing a nearly invisible flame at full thrust.
Depiction of a hydrogen atom with size of central proton shown, and the atomic diameter shown as about twice the Bohr model radius (image not to scale)
Hydrogen gas is colorless and transparent, here contained in a glass ampoule.
Phase diagram of hydrogen. The temperature and pressure scales are logarithmic, so one unit corresponds to a 10x change. The left edge corresponds to 105 Pa, which is about atmospheric pressure.
A sample of sodium hydride
Hydrogen discharge (spectrum) tube
Deuterium discharge (spectrum) tube
Antoine-Laurent de Lavoisier
Hydrogen emission spectrum lines in the visible range. These are the four visible lines of the Balmer series
NGC 604, a giant region of ionized hydrogen in the Triangulum Galaxy
300x300px
300x300px
360x360px

For the most common isotope of hydrogen (symbol 1H) each atom has one proton, one electron, and no neutrons.

, the other stable hydrogen isotope, is known as deuterium and contains one proton and one neutron in the nucleus. All deuterium in the universe is thought to have been produced at the time of the Big Bang, and has endured since that time. Deuterium is not radioactive, and does not represent a significant toxicity hazard. Water enriched in molecules that include deuterium instead of normal hydrogen is called heavy water. Deuterium and its compounds are used as a non-radioactive label in chemical experiments and in solvents for -NMR spectroscopy. Heavy water is used as a neutron moderator and coolant for nuclear reactors. Deuterium is also a potential fuel for commercial nuclear fusion.

A model of the atomic nucleus showing it as a compact bundle of the two types of nucleons: protons (red) and neutrons (blue). In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics. In a nucleus that occupies a certain energy level (for example, the ground state), each nucleon can be said to occupy a range of locations.

Atomic nucleus

3 links

A model of the atomic nucleus showing it as a compact bundle of the two types of nucleons: protons (red) and neutrons (blue). In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics. In a nucleus that occupies a certain energy level (for example, the ground state), each nucleon can be said to occupy a range of locations.
A figurative depiction of the helium-4 atom with the electron cloud in shades of gray. In the nucleus, the two protons and two neutrons are depicted in red and blue. This depiction shows the particles as separate, whereas in an actual helium atom, the protons are superimposed in space and most likely found at the very center of the nucleus, and the same is true of the two neutrons. Thus, all four particles are most likely found in exactly the same space, at the central point. Classical images of separate particles fail to model known charge distributions in very small nuclei. A more accurate image is that the spatial distribution of nucleons in a helium nucleus is much closer to the helium electron cloud shown here, although on a far smaller scale, than to the fanciful nucleus image. Both the helium atom and its nucleus are spherically symmetric.

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment.

For example, between protons and neutrons to form [NP] deuteron, and also between protons and protons, and neutrons and neutrons.

Hydrogen atom

2 links

Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale)
Probability densities through the xz-plane for the electron at different quantum numbers (ℓ, across top; n, down side; m = 0)

A hydrogen atom is an atom of the chemical element hydrogen.

The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force.

Deuterium contains one neutron and one proton in its nucleus.

Force (in units of 10,000 N) between two nucleons as a function of distance as computed from the Reid potential (1968). The spins of the neutron and proton are aligned, and they are in the S angular momentum state. The attractive (negative) force has a maximum at a distance of about 1 fm with a force of about 25,000 N. Particles much closer than a distance of 0.8 fm experience a large repulsive (positive) force. Particles separated by a distance greater than 1 fm are still attracted (Yukawa potential), but the force falls as an exponential function of distance.

Nuclear force

2 links

Force (in units of 10,000 N) between two nucleons as a function of distance as computed from the Reid potential (1968). The spins of the neutron and proton are aligned, and they are in the S angular momentum state. The attractive (negative) force has a maximum at a distance of about 1 fm with a force of about 25,000 N. Particles much closer than a distance of 0.8 fm experience a large repulsive (positive) force. Particles separated by a distance greater than 1 fm are still attracted (Yukawa potential), but the force falls as an exponential function of distance.
Corresponding potential energy (in units of MeV) of two nucleons as a function of distance as computed from the Reid potential. The potential well is a minimum at a distance of about 0.8 fm. With this potential nucleons can become bound with a negative "binding energy."
Comparison between the Nuclear Force and the Coulomb Force.
a - residual strong force (nuclear force), rapidly decreases to insignificance at distances beyond about 2.5 fm,
b - at distances less than ~ 0.7 fm between nucleons centers the nuclear force becomes repulsive,
c - coulomb repulsion force between two protons (over 3 fm force becomes the main),
d - equilibrium position for proton - proton, 
r - radius of a nucleon (a cloud composed of three quarks).
Note: 1 fm = 1E-15 m.
A simplified Feynman diagram of a strong proton–neutron interaction mediated by a virtual neutral pion. Time proceeds from left to right.
An animation of the interaction. The colored double circles are gluons. Anticolors are shown as per [[:File:Quark Anticolours.png|this diagram]] ([[:File: Nulcear Force anim.gif|larger version]]).
The same diagram as that above with the individual quark constituents shown, to illustrate how the fundamental strong interaction gives rise to the nuclear force. Straight lines are quarks, while multi-colored loops are gluons (the carriers of the fundamental force). Other gluons, which bind together the proton, neutron, and pion "in flight", are not shown.

The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms.

For fermion particles of different types, such as a proton and neutron, particles may be close to each other and have aligned spins without violating the Pauli exclusion principle, and the nuclear force may bind them (in this case, into a deuteron), since the nuclear force is much stronger for spin-aligned particles.

Electric field of a positive and a negative point charge

Electric charge

1 links

Physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field.

Physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field.

Electric field of a positive and a negative point charge
Diagram showing field lines and equipotentials around an electron, a negatively charged particle. In an electrically neutral atom, the number of electrons is equal to the number of protons (which are positively charged), resulting in a net zero overall charge
Coulomb's torsion balance

Electric charge can be positive or negative (commonly carried by protons and electrons respectively).

In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms.

This property has been experimentally verified by showing that the charge of one helium nucleus (two protons and two neutrons bound together in a nucleus and moving around at high speeds) is the same as two deuterium nuclei (one proton and one neutron bound together, but moving much more slowly than they would if they were in a helium nucleus).

The Moon's cosmic ray shadow, as seen in secondary muons generated by cosmic rays in the atmosphere, and detected 700 meters below ground, at the Soudan 2 detector

Muon

2 links

Elementary particle similar to the electron, with an electric charge of −1 e and a spin of 1⁄2, but with a much greater mass.

Elementary particle similar to the electron, with an electric charge of −1 e and a spin of 1⁄2, but with a much greater mass.

The Moon's cosmic ray shadow, as seen in secondary muons generated by cosmic rays in the atmosphere, and detected 700 meters below ground, at the Soudan 2 detector
The most common decay of the muon
Cosmic ray muon passing through lead in cloud chamber

They were negatively charged but curved less sharply than electrons, but more sharply than protons, for particles of the same velocity.

The muon was the first elementary particle discovered that does not appear in ordinary atoms.

Therefore this bound muon-electron pair can be treated to a first approximation as a short-lived "atom" that behaves chemically like the isotopes of hydrogen (protium, deuterium and tritium).