A report on AtomIon and Proton

Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)
Hydrogen atom (center) contains a single proton and a single electron. Removal of the electron gives a cation (left), whereas the addition of an electron gives an anion (right). The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only charge-+1 cation that has no electrons, but even cations that (unlike hydrogen) retain one or more electrons are still smaller than the neutral atoms or molecules from which they are derived.
The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.
The Geiger–Marsden experiment:
Left: Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection.
Right: Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus.
Schematic of an ion chamber, showing drift of ions. Electrons drift faster than positive ions due to their much smaller mass.
Ernest Rutherford at the first Solvay Conference, 1911
The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete.
Avalanche effect between two electrodes. The original ionization event liberates one electron, and each subsequent collision liberates a further electron, so two electrons emerge from each collision: the ionizing electron and the liberated electron.
Proton detected in an isopropanol cloud chamber
The binding energy needed for a nucleon to escape the nucleus, for various isotopes
Equivalent notations for an iron atom (Fe) that lost two electrons, referred to as ferrous.
Protium, the most common isotope of hydrogen, consists of one proton and one electron (it has no neutrons). The term "hydrogen ion" implies that that H-atom has lost its one electron, causing only a proton to remain. Thus, in chemistry, the terms "proton" and "hydrogen ion" (for the protium isotope) are used synonymously
A potential well, showing, according to classical mechanics, the minimum energy V(x) needed to reach each position x. Classically, a particle with energy E is constrained to a range of positions between x1 and x2.
Mixed Roman numerals and charge notations for the uranyl ion. The oxidation state of the metal is shown as superscripted Roman numerals, whereas the charge of the entire complex is shown by the angle symbol together with the magnitude and sign of the net charge.
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
An electrostatic potential map of the nitrate ion . The 3-dimensional shell represents a single arbitrary isopotential.
This diagram shows the half-life (T½) of various isotopes with Z protons and N neutrons.
These electron's energy levels (not to scale) are sufficient for ground states of atoms up to cadmium (5s2 4d10) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.
An example of absorption lines in a spectrum
Graphic illustrating the formation of a Bose–Einstein condensate
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. The surface atoms deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them (See surface reconstruction).
Periodic table showing the origin of each element. Elements from carbon up to sulfur may be made in small stars by the alpha process. Elements beyond iron are made in large stars with slow neutron capture (s-process). Elements heavier than iron may be made in neutron star mergers or supernovae after the r-process.

An ion is an atom or molecule with a net electrical charge.

- Ion

The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention.

- Ion

One or more protons are present in the nucleus of every atom.

- Proton

The nucleus is made of one or more protons and a number of neutrons.

- Atom

If an atom has more or fewer electrons than protons, then it has an overall negative or positive charge, respectively – such atoms are called ions.

- Atom

For example, a proton captured by a water molecule in water becomes hydronium, the aqueous cation.

- Proton
Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)

4 related topics with Alpha

Overall

Hydrogen atomic orbitals at different energy levels. The more opaque areas are where one is most likely to find an electron at any given time.

Electron

3 links

Subatomic particle whose electric charge is negative one elementary charge.

Subatomic particle whose electric charge is negative one elementary charge.

Hydrogen atomic orbitals at different energy levels. The more opaque areas are where one is most likely to find an electron at any given time.
A beam of electrons deflected in a circle by a magnetic field
J. J. Thomson
Robert Millikan
The Bohr model of the atom, showing states of an electron with energy quantized by the number n. An electron dropping to a lower orbit emits a photon equal to the energy difference between the orbits.
In quantum mechanics, the behavior of an electron in an atom is described by an orbital, which is a probability distribution rather than an orbit. In the figure, the shading indicates the relative probability to "find" the electron, having the energy corresponding to the given quantum numbers, at that point.
Standard Model of elementary particles. The electron (symbol e) is on the left.
Example of an antisymmetric wave function for a quantum state of two identical fermions in a 1-dimensional box. If the particles swap position, the wave function inverts its sign.
A schematic depiction of virtual electron–positron pairs appearing at random near an electron (at lower left)
A particle with charge q (at left) is moving with velocity v through a magnetic field B that is oriented toward the viewer. For an electron, q is negative so it follows a curved trajectory toward the top.
Here, Bremsstrahlung is produced by an electron e deflected by the electric field of an atomic nucleus. The energy change E2 − E1 determines the frequency f of the emitted photon.
Probability densities for the first few hydrogen atom orbitals, seen in cross-section. The energy level of a bound electron determines the orbital it occupies, and the color reflects the probability of finding the electron at a given position.
A lightning discharge consists primarily of a flow of electrons. The electric potential needed for lightning can be generated by a triboelectric effect.
Lorentz factor as a function of velocity. It starts at value 1 and goes to infinity as v approaches c.
Pair production of an electron and positron, caused by the close approach of a photon with an atomic nucleus. The lightning symbol represents an exchange of a virtual photon, thus an electric force acts. The angle between the particles is very small.
An extended air shower generated by an energetic cosmic ray striking the Earth's atmosphere
Aurorae are mostly caused by energetic electrons precipitating into the atmosphere.
During a NASA wind tunnel test, a model of the Space Shuttle is targeted by a beam of electrons, simulating the effect of ionizing gases during re-entry.

The electron's mass is approximately 1836 times smaller than that of the proton.

The Coulomb force interaction between the positive protons within atomic nuclei and the negative electrons without, allows the composition of the two known as atoms.

After studying the phenomenon of electrolysis in 1874, Irish physicist George Johnstone Stoney suggested that there existed a "single definite quantity of electricity", the charge of a monovalent ion.

Electric field of a positive and a negative point charge

Electric charge

1 links

Physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field.

Physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field.

Electric field of a positive and a negative point charge
Diagram showing field lines and equipotentials around an electron, a negatively charged particle. In an electrically neutral atom, the number of electrons is equal to the number of protons (which are positively charged), resulting in a net zero overall charge
Coulomb's torsion balance

Electric charge can be positive or negative (commonly carried by protons and electrons respectively).

In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms.

An ion is an atom (or group of atoms) that has lost one or more electrons, giving it a net positive charge (cation), or that has gained one or more electrons, giving it a net negative charge (anion).

A physicist observes alpha particles from the decay of a polonium source in a cloud chamber

Alpha particle

1 links

A physicist observes alpha particles from the decay of a polonium source in a cloud chamber
Alpha radiation detected in an isopropanol cloud chamber (after injection of an artificial source radon-220).
Example selection of radioactive nuclides with main emitted alpha particle energies plotted against their atomic number. Note that each nuclide has a distinct alpha spectrum.
Alpha radiation consists of helium-4 nucleus and is readily stopped by a sheet of paper. Beta radiation, consisting of electrons, is halted by an aluminium plate. Gamma radiation is eventually absorbed as it penetrates a dense material. Lead is good at absorbing gamma radiation, due to its density.
An alpha particle is deflected by a magnetic field
Dispersing of alpha particles on a thin metal sheet
Energy-loss (Bragg curve) in air for typical alpha particle emitted through radioactive decay.
The trace of a single alpha particle obtained by nuclear physicist Wolfhart Willimczik with his spark chamber specially made for alpha particles.

Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus.

Because they are identical to helium nuclei, they are also sometimes written as or indicating a helium ion with a +2 charge (missing its two electrons).

When an atom emits an alpha particle in alpha decay, the atom's mass number decreases by four due to the loss of the four nucleons in the alpha particle.

An oil painting of a chemist (Ana Kansky, painted by Henrika Šantel in 1932)

Chemistry

1 links

Scientific study of the properties and behavior of matter.

Scientific study of the properties and behavior of matter.

An oil painting of a chemist (Ana Kansky, painted by Henrika Šantel in 1932)
Laboratory, Institute of Biochemistry, University of Cologne in Germany.
Solutions of substances in reagent bottles, including ammonium hydroxide and nitric acid, illuminated in different colors
A diagram of an atom based on the Bohr model
Standard form of the periodic table of chemical elements. The colors represent different categories of elements
Carbon dioxide (CO2), an example of a chemical compound
A ball-and-stick representation of the caffeine molecule (C8H10N4O2).
A 2-D structural formula of a benzene molecule (C6H6)
Diagram showing relationships among the phases and the terms used to describe phase changes.
An animation of the process of ionic bonding between sodium (Na) and chlorine (Cl) to form sodium chloride, or common table salt. Ionic bonding involves one atom taking valence electrons from another (as opposed to sharing, which occurs in covalent bonding)
In the methane molecule (CH4), the carbon atom shares a pair of valence electrons with each of the four hydrogen atoms. Thus, the octet rule is satisfied for C-atom (it has eight electrons in its valence shell) and the duet rule is satisfied for the H-atoms (they have two electrons in their valence shells).
Emission spectrum of iron
During chemical reactions, bonds between atoms break and form, resulting in different substances with different properties. In a blast furnace, iron oxide, a compound, reacts with carbon monoxide to form iron, one of the chemical elements, and carbon dioxide.
The crystal lattice structure of potassium chloride (KCl), a salt which is formed due to the attraction of K+ cations and Cl− anions. Note how the overall charge of the ionic compound is zero.
Hydrogen bromide exists in the gas phase as a diatomic molecule
Democritus' atomist philosophy was later adopted by Epicurus (341–270 BCE).
15th-century artistic impression of Jābir ibn Hayyān (Geber), a Perso-Arab alchemist and pioneer in organic chemistry.
Antoine-Laurent de Lavoisier is considered the "Father of Modern Chemistry".
In his periodic table, Dmitri Mendeleev predicted the existence of 7 new elements, and placed all 60 elements known at the time in their correct places.
Top: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed. 
Bottom: Observed results: a small portion of the particles were deflected, indicating a small, concentrated charge.

It is a natural science that covers the elements that make up matter to the compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.

The nucleus is made up of positively charged protons and uncharged neutrons (together called nucleons), while the electron cloud consists of negatively charged electrons which orbit the nucleus.