A report on ProtonAtom and Periodic table

The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.
Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)
435x435px
Ernest Rutherford at the first Solvay Conference, 1911
The Geiger–Marsden experiment:
Left: Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection.
Right: Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus.
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
Proton detected in an isopropanol cloud chamber
The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete.
Idealized order of shell-filling (most accurate for n  ≲ 4.)
Protium, the most common isotope of hydrogen, consists of one proton and one electron (it has no neutrons). The term "hydrogen ion" implies that that H-atom has lost its one electron, causing only a proton to remain. Thus, in chemistry, the terms "proton" and "hydrogen ion" (for the protium isotope) are used synonymously
The binding energy needed for a nucleon to escape the nucleus, for various isotopes
Trend in atomic radii
A potential well, showing, according to classical mechanics, the minimum energy V(x) needed to reach each position x. Classically, a particle with energy E is constrained to a range of positions between x1 and x2.
Graph of first ionisation energies of the elements in electronvolts (predictions used for elements 105–118)
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
Trend in electron affinities
This diagram shows the half-life (T½) of various isotopes with Z protons and N neutrons.
Flowing liquid mercury. Its liquid state at room temperature is a result of special relativity.
These electron's energy levels (not to scale) are sufficient for ground states of atoms up to cadmium (5s2 4d10) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.
A periodic table colour-coded to show some commonly used sets of similar elements. The categories and their boundaries differ somewhat between sources. Alkali metals
 Alkaline earth metals
 Lanthanides
 Actinides
 Transition metals Other metals
 Metalloids
 Other nonmetals
 Halogens
 Noble gases
An example of absorption lines in a spectrum
Mendeleev's 1869 periodic table
Graphic illustrating the formation of a Bose–Einstein condensate
Mendeleev's 1871 periodic table
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. The surface atoms deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them (See surface reconstruction).
Dmitri Mendeleev
Periodic table showing the origin of each element. Elements from carbon up to sulfur may be made in small stars by the alpha process. Elements beyond iron are made in large stars with slow neutron capture (s-process). Elements heavier than iron may be made in neutron star mergers or supernovae after the r-process.
Henry Moseley
Periodic table of van den Broek
Glenn T. Seaborg
One possible form of the extended periodic table to element 172, suggested by Finnish chemist Pekka Pyykkö. Deviations from the Madelung order (8s < < 6f < 7d < 8p) begin to appear at elements 139 and 140, though for the most part it continues to hold approximately.
Otto Theodor Benfey's spiral periodic table (1964)
Iron, a metal
Sulfur, a nonmetal
Arsenic, an element often called a semi-metal or metalloid

One or more protons are present in the nucleus of every atom.

- Proton

The nucleus is made of one or more protons and a number of neutrons.

- Atom

The smallest constituents of all normal matter are known as atoms.

- Periodic table

Atoms consist of a small positively charged nucleus, made of positively charged protons and uncharged neutrons, surrounded by a cloud of negatively charged electrons; the charges cancel out, so atoms are neutral.

- Periodic table

Following the discovery of the atomic nucleus by Ernest Rutherford in 1911, Antonius van den Broek proposed that the place of each element in the periodic table (its atomic number) is equal to its nuclear charge.

- Proton

While experimenting with the products of radioactive decay, in 1913 radiochemist Frederick Soddy discovered that there appeared to be more than one type of atom at each position on the periodic table.

- Atom
The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.

5 related topics with Alpha

Overall

Moseley in 1914

Henry Moseley

3 links

English physicist, whose contribution to the science of physics was the justification from physical laws of the previous empirical and chemical concept of the atomic number.

English physicist, whose contribution to the science of physics was the justification from physical laws of the previous empirical and chemical concept of the atomic number.

Moseley in 1914
Blue plaque erected by the Royal Society of Chemistry on the Townsend Building of Oxford's Clarendon Laboratory, commemorating Moseley's work on X-rays emitted by elements

That theory refined Ernest Rutherford's and Antonius van den Broek's model, which proposed that the atom contains in its nucleus a number of positive nuclear charges that is equal to its (atomic) number in the periodic table.

In his invention of the Periodic Table of the Elements, Mendeleev had interchanged the orders of a few pairs of elements in order to put them in more appropriate places in this table of the elements.

(This was later to be the basis of the Aufbau principle in atomic studies.) As noted by Bohr, Moseley's law provided a reasonably complete experimental set of data that supported the (new from 1911) conception by Ernest Rutherford and Antonius van den Broek of the atom, with a positively charged nucleus surrounded by negatively charged electrons in which the atomic number is understood to be the exact physical number of positive charges (later discovered and called protons) in the central atomic nuclei of the elements.

The chemical elements ordered in the periodic table

Chemical element

2 links

The chemical elements ordered in the periodic table
Estimated distribution of dark matter and dark energy in the universe. Only the fraction of the mass and energy in the universe labeled "atoms" is composed of chemical elements.
Periodic table showing the cosmogenic origin of each element in the Big Bang, or in large or small stars. Small stars can produce certain elements up to sulfur, by the alpha process. Supernovae are needed to produce "heavy" elements (those beyond iron and nickel) rapidly by neutron buildup, in the r-process. Certain large stars slowly produce other elements heavier than iron, in the s-process; these may then be blown into space in the off-gassing of planetary nebulae
Abundances of the chemical elements in the Solar System. Hydrogen and helium are most common, from the Big Bang. The next three elements (Li, Be, B) are rare because they are poorly synthesized in the Big Bang and also in stars. The two general trends in the remaining stellar-produced elements are: (1) an alternation of abundance in elements as they have even or odd atomic numbers (the Oddo-Harkins rule), and (2) a general decrease in abundance as elements become heavier. Iron is especially common because it represents the minimum energy nuclide that can be made by fusion of helium in supernovae.
Mendeleev's 1869 periodic table: An experiment on a system of elements. Based on their atomic weights and chemical similarities.
Dmitri Mendeleev
Henry Moseley

A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species.

Much of the modern understanding of elements developed from the work of Dmitri Mendeleev, a Russian chemist who published the first recognizable periodic table in 1869.

An explanation of the superscripts and subscripts seen in atomic number notation. Atomic number is the number of protons, and therefore also the total positive charge, in the atomic nucleus.

Atomic number

2 links

Charge number of an atomic nucleus.

Charge number of an atomic nucleus.

An explanation of the superscripts and subscripts seen in atomic number notation. Atomic number is the number of protons, and therefore also the total positive charge, in the atomic nucleus.
The Rutherford–Bohr model of the hydrogen atom or a hydrogen-like ion (Z > 1). In this model it is an essential feature that the photon energy (or frequency) of the electromagnetic radiation emitted (shown) when an electron jumps from one orbital to another be proportional to the mathematical square of atomic charge (Z2). Experimental measurement by Henry Moseley of this radiation for many elements (from ) showed the results as predicted by Bohr. Both the concept of atomic number and the Bohr model were thereby given scientific credence.
Russian chemist Dmitri Mendeleev, creator of the periodic table.
Niels Bohr, creator of the Bohr model.
Henry Moseley in his lab.

For ordinary nuclei, this is equal to the proton number (np) or the number of protons found in the nucleus for every atom of that element.

The conventional symbol Z comes from the German word Zahl 'number', which, before the modern synthesis of ideas from chemistry and physics, merely denoted an element's numerical place in the periodic table, whose order was then approximately, but not completely, consistent with the order of the elements by atomic weights.

An oil painting of a chemist (Ana Kansky, painted by Henrika Šantel in 1932)

Chemistry

1 links

Scientific study of the properties and behavior of matter.

Scientific study of the properties and behavior of matter.

An oil painting of a chemist (Ana Kansky, painted by Henrika Šantel in 1932)
Laboratory, Institute of Biochemistry, University of Cologne in Germany.
Solutions of substances in reagent bottles, including ammonium hydroxide and nitric acid, illuminated in different colors
A diagram of an atom based on the Bohr model
Standard form of the periodic table of chemical elements. The colors represent different categories of elements
Carbon dioxide (CO2), an example of a chemical compound
A ball-and-stick representation of the caffeine molecule (C8H10N4O2).
A 2-D structural formula of a benzene molecule (C6H6)
Diagram showing relationships among the phases and the terms used to describe phase changes.
An animation of the process of ionic bonding between sodium (Na) and chlorine (Cl) to form sodium chloride, or common table salt. Ionic bonding involves one atom taking valence electrons from another (as opposed to sharing, which occurs in covalent bonding)
In the methane molecule (CH4), the carbon atom shares a pair of valence electrons with each of the four hydrogen atoms. Thus, the octet rule is satisfied for C-atom (it has eight electrons in its valence shell) and the duet rule is satisfied for the H-atoms (they have two electrons in their valence shells).
Emission spectrum of iron
During chemical reactions, bonds between atoms break and form, resulting in different substances with different properties. In a blast furnace, iron oxide, a compound, reacts with carbon monoxide to form iron, one of the chemical elements, and carbon dioxide.
The crystal lattice structure of potassium chloride (KCl), a salt which is formed due to the attraction of K+ cations and Cl− anions. Note how the overall charge of the ionic compound is zero.
Hydrogen bromide exists in the gas phase as a diatomic molecule
Democritus' atomist philosophy was later adopted by Epicurus (341–270 BCE).
15th-century artistic impression of Jābir ibn Hayyān (Geber), a Perso-Arab alchemist and pioneer in organic chemistry.
Antoine-Laurent de Lavoisier is considered the "Father of Modern Chemistry".
In his periodic table, Dmitri Mendeleev predicted the existence of 7 new elements, and placed all 60 elements known at the time in their correct places.
Top: Expected results: alpha particles passing through the plum pudding model of the atom undisturbed. 
Bottom: Observed results: a small portion of the particles were deflected, indicating a small, concentrated charge.

It is a natural science that covers the elements that make up matter to the compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.

The nucleus is made up of positively charged protons and uncharged neutrons (together called nucleons), while the electron cloud consists of negatively charged electrons which orbit the nucleus.

The standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number.

Scheme of two types of electron capture. Top: The nucleus absorbs an electron. Lower left: An outer electron replaces the "missing" electron. An x-ray, equal in energy to the difference between the two electron shells, is emitted. Lower right: In the Auger effect, the energy absorbed when the outer electron replaces the inner electron is transferred to an outer electron. The outer electron is ejected from the atom, leaving a positive ion.

Electron capture

0 links

Scheme of two types of electron capture. Top: The nucleus absorbs an electron. Lower left: An outer electron replaces the "missing" electron. An x-ray, equal in energy to the difference between the two electron shells, is emitted. Lower right: In the Auger effect, the energy absorbed when the outer electron replaces the inner electron is transferred to an outer electron. The outer electron is ejected from the atom, leaving a positive ion.
The leading-order Feynman diagrams for electron capture decay. An electron interacts with an up quark in the nucleus via a W boson to create a down quark and electron neutrino. Two diagrams comprise the leading (second) order, though as a virtual particle, the type (and charge) of the W-boson is indistinguishable.

Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells.

Electron capture is the primary decay mode for isotopes with a relative superabundance of protons in the nucleus, but with insufficient energy difference between the isotope and its prospective daughter (the isobar with one less positive charge) for the nuclide to decay by emitting a positron.

Around the elements in the middle of the periodic table, isotopes that are lighter than stable isotopes of the same element tend to decay through electron capture, while isotopes heavier than the stable ones decay by electron emission.