A report on Atom

Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)
The Geiger–Marsden experiment:
Left: Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection.
Right: Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus.
The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete.
The binding energy needed for a nucleon to escape the nucleus, for various isotopes
A potential well, showing, according to classical mechanics, the minimum energy V(x) needed to reach each position x. Classically, a particle with energy E is constrained to a range of positions between x1 and x2.
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
This diagram shows the half-life (T½) of various isotopes with Z protons and N neutrons.
These electron's energy levels (not to scale) are sufficient for ground states of atoms up to cadmium (5s2 4d10) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.
An example of absorption lines in a spectrum
Graphic illustrating the formation of a Bose–Einstein condensate
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. The surface atoms deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them (See surface reconstruction).
Periodic table showing the origin of each element. Elements from carbon up to sulfur may be made in small stars by the alpha process. Elements beyond iron are made in large stars with slow neutron capture (s-process). Elements heavier than iron may be made in neutron star mergers or supernovae after the r-process.

Smallest unit of ordinary matter that forms a chemical element.

- Atom
Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)

115 related topics with Alpha

Overall

Atomic orbitals of the electron in a hydrogen atom at different energy levels. The probability of finding the electron is given by the color, as shown in the key at upper right.

Atomic orbital

16 links

Domain coloring of a

Domain coloring of a

Atomic orbitals of the electron in a hydrogen atom at different energy levels. The probability of finding the electron is given by the color, as shown in the key at upper right.
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
The Rutherford–Bohr model of the hydrogen atom.
Energetic levels and sublevels of polyelectronic atoms.
Experimentally imaged 1s and 2p core-electron orbitals of Sr, including the effects of atomic thermal vibrations and excitation broadening, retrieved from energy dispersive x-ray spectroscopy (EDX) in scanning transmission electron microscopy (STEM).
The 1s, 2s, and 2p orbitals of a sodium atom.
Atomic orbitals spdf m-eigenstates and superpositions
Electron atomic and molecular orbitals. The chart of orbitals (left) is arranged by increasing energy (see Madelung rule). Note that atomic orbits are functions of three variables (two angles, and the distance r from the nucleus). These images are faithful to the angular component of the orbital, but not entirely representative of the orbital as a whole.
Drum mode <math>u_{01}</math>
Drum mode <math>u_{02}</math>
Drum mode <math>u_{03}</math>
Wave function of 1s orbital (real part, 2D-cut, <math>r_{max}=2 a_0</math>)
Wave function of 2s orbital (real part, 2D-cut, <math>r_{max}=10 a_0</math>)
Wave function of 3s orbital (real part, 2D-cut, <math>r_{max}=20 a_0</math>)
Drum mode <math>u_{11}</math>
Drum mode <math>u_{12}</math>
Drum mode <math>u_{13}</math>
Wave function of 2p orbital (real part, 2D-cut, <math>r_{max}=10 a_0</math>)
Wave function of 3p orbital (real part, 2D-cut, <math>r_{max}=20 a_0</math>)
Wave function of 4p orbital (real part, 2D-cut, <math>r_{max}=25 a_0</math>)
Drum mode <math>u_{21}</math>
Drum mode <math>u_{22}</math>
Drum mode <math>u_{23}</math>

In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom.

Hydrogen atom (center) contains a single proton and a single electron. Removal of the electron gives a cation (left), whereas the addition of an electron gives an anion (right). The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only charge-+1 cation that has no electrons, but even cations that (unlike hydrogen) retain one or more electrons are still smaller than the neutral atoms or molecules from which they are derived.

Ion

14 links

Hydrogen atom (center) contains a single proton and a single electron. Removal of the electron gives a cation (left), whereas the addition of an electron gives an anion (right). The hydrogen anion, with its loosely held two-electron cloud, has a larger radius than the neutral atom, which in turn is much larger than the bare proton of the cation. Hydrogen forms the only charge-+1 cation that has no electrons, but even cations that (unlike hydrogen) retain one or more electrons are still smaller than the neutral atoms or molecules from which they are derived.
Schematic of an ion chamber, showing drift of ions. Electrons drift faster than positive ions due to their much smaller mass.
Avalanche effect between two electrodes. The original ionization event liberates one electron, and each subsequent collision liberates a further electron, so two electrons emerge from each collision: the ionizing electron and the liberated electron.
Equivalent notations for an iron atom (Fe) that lost two electrons, referred to as ferrous.
Mixed Roman numerals and charge notations for the uranyl ion. The oxidation state of the metal is shown as superscripted Roman numerals, whereas the charge of the entire complex is shown by the angle symbol together with the magnitude and sign of the net charge.
An electrostatic potential map of the nitrate ion . The 3-dimensional shell represents a single arbitrary isopotential.

An ion is an atom or molecule with a net electrical charge.

Electric field of a positive and a negative point charge

Electric charge

12 links

Physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field.

Physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field.

Electric field of a positive and a negative point charge
Diagram showing field lines and equipotentials around an electron, a negatively charged particle. In an electrically neutral atom, the number of electrons is equal to the number of protons (which are positively charged), resulting in a net zero overall charge
Coulomb's torsion balance

In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms.

435x435px

Periodic table

14 links

Tabular display of the chemical elements.

Tabular display of the chemical elements.

435x435px
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
Idealized order of shell-filling (most accurate for n  ≲ 4.)
Trend in atomic radii
Graph of first ionisation energies of the elements in electronvolts (predictions used for elements 105–118)
Trend in electron affinities
Flowing liquid mercury. Its liquid state at room temperature is a result of special relativity.
A periodic table colour-coded to show some commonly used sets of similar elements. The categories and their boundaries differ somewhat between sources. Alkali metals
 Alkaline earth metals
 Lanthanides
 Actinides
 Transition metals Other metals
 Metalloids
 Other nonmetals
 Halogens
 Noble gases
Mendeleev's 1869 periodic table
Mendeleev's 1871 periodic table
Dmitri Mendeleev
Henry Moseley
Periodic table of van den Broek
Glenn T. Seaborg
One possible form of the extended periodic table to element 172, suggested by Finnish chemist Pekka Pyykkö. Deviations from the Madelung order (8s < < 6f < 7d < 8p) begin to appear at elements 139 and 140, though for the most part it continues to hold approximately.
Otto Theodor Benfey's spiral periodic table (1964)
Iron, a metal
Sulfur, a nonmetal
Arsenic, an element often called a semi-metal or metalloid

The smallest constituents of all normal matter are known as atoms.

Bohr in 1922

Niels Bohr

13 links

Bohr in 1922
Bohr as a young man
Bohr and Margrethe Nørlund on their engagement in 1910.
The Bohr model of the hydrogen atom. A negatively charged electron, confined to an atomic orbital, orbits a small, positively charged nucleus; a quantum jump between orbits is accompanied by an emitted or absorbed amount of electromagnetic radiation.
The evolution of atomic models in the 20th century: Thomson, Rutherford, Bohr, Heisenberg/Schrödinger
The Niels Bohr Institute, part of the University of Copenhagen
Bohr and Albert Einstein (image from 1925) had a long-running debate about the metaphysical implication of quantum physics.
Werner Heisenberg (left) with Bohr at the Copenhagen Conference in 1934
Bohr with James Franck, Albert Einstein and Isidor Isaac Rabi (LR)
Bohr's coat of arms, 1947. Argent, a taijitu (yin-yang symbol) Gules and Sable. Motto: Contraria sunt complementa ("opposites are complementary").
The Theory of Spectra and Atomic Constitution (Drei Aufsätze über Spektren und Atombau), 1922

Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.

Photons are emitted by a cyan laser beam outside, orange laser beam inside calcite and its fluorescence

Photon

19 links

Elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force.

Elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force.

Photons are emitted by a cyan laser beam outside, orange laser beam inside calcite and its fluorescence
Photoelectric effect: the emission of electrons from a metal plate caused by light quanta – photons.
The cone shows possible values of wave 4-vector of a photon. The "time" axis gives the angular frequency (rad⋅s−1) and the "space" axis represents the angular wavenumber (rad⋅m−1). Green and indigo represent left and right polarization
Thomas Young's double-slit experiment in 1801 showed that light can act as a wave, helping to invalidate early particle theories of light.
In 1900, Maxwell's theoretical model of light as oscillating electric and magnetic fields seemed complete. However, several observations could not be explained by any wave model of electromagnetic radiation, leading to the idea that light-energy was packaged into quanta described by . Later experiments showed that these light-quanta also carry momentum and, thus, can be considered particles: The photon concept was born, leading to a deeper understanding of the electric and magnetic fields themselves.
Up to 1923, most physicists were reluctant to accept that light itself was quantized. Instead, they tried to explain photon behaviour by quantizing only matter, as in the Bohr model of the hydrogen atom (shown here). Even though these semiclassical models were only a first approximation, they were accurate for simple systems and they led to quantum mechanics.
Photons in a Mach–Zehnder interferometer exhibit wave-like interference and particle-like detection at single-photon detectors.
Stimulated emission (in which photons "clone" themselves) was predicted by Einstein in his kinetic analysis, and led to the development of the laser. Einstein's derivation inspired further developments in the quantum treatment of light, which led to the statistical interpretation of quantum mechanics.
Different electromagnetic modes (such as those depicted here) can be treated as independent simple harmonic oscillators. A photon corresponds to a unit of energy E = hν in its electromagnetic mode.

During a molecular, atomic or nuclear transition to a lower energy level, photons of various energy will be emitted, ranging from radio waves to gamma rays.

Hydrogen's purple glow in its plasma state, the most abundant in the universe

Matter

9 links

Any substance that has mass and takes up space by having volume.

Any substance that has mass and takes up space by having volume.

Hydrogen's purple glow in its plasma state, the most abundant in the universe
Under the "quarks and leptons" definition, the elementary and composite particles made of the quarks (in purple) and leptons (in green) would be matter—while the gauge bosons (in red) would not be matter. However, interaction energy inherent to composite particles (for example, gluons involved in neutrons and protons) contribute to the mass of ordinary matter.
Quark structure of a proton: 2 up quarks and 1 down quark.
A comparison between the white dwarf IK Pegasi B (center), its A-class companion IK Pegasi A (left) and the Sun (right). This white dwarf has a surface temperature of 35,500 K.
Phase diagram for a typical substance at a fixed volume. Vertical axis is Pressure, horizontal axis is Temperature. The green line marks the freezing point (above the green line is solid, below it is liquid) and the blue line the boiling point (above it is liquid and below it is gas). So, for example, at higher T, a higher P is necessary to maintain the substance in liquid phase. At the triple point the three phases; liquid, gas and solid; can coexist. Above the critical point there is no detectable difference between the phases. The dotted line shows the anomalous behavior of water: ice melts at constant temperature with increasing pressure.
Galaxy rotation curve for the Milky Way. Vertical axis is speed of rotation about the galactic center. Horizontal axis is distance from the galactic center. The sun is marked with a yellow ball. The observed curve of speed of rotation is blue. The predicted curve based upon stellar mass and gas in the Milky Way is red. The difference is due to dark matter or perhaps a modification of the law of gravity. Scatter in observations is indicated roughly by gray bars.

All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic particles, and in everyday as well as scientific usage, "matter" generally includes atoms and anything made up of them, and any particles (or combination of particles) that act as if they have both rest mass and volume.

Induced fission reaction. A neutron is absorbed by a uranium-235 nucleus, turning it briefly into an excited uranium-236 nucleus, with the excitation energy provided by the kinetic energy of the neutron plus the forces that bind the neutron. The uranium-236, in turn, splits into fast-moving lighter elements (fission products) and releases several free neutrons, one or more "prompt gamma rays" (not shown) and a (proportionally) large amount of energy.

Nuclear fission

9 links

Induced fission reaction. A neutron is absorbed by a uranium-235 nucleus, turning it briefly into an excited uranium-236 nucleus, with the excitation energy provided by the kinetic energy of the neutron plus the forces that bind the neutron. The uranium-236, in turn, splits into fast-moving lighter elements (fission products) and releases several free neutrons, one or more "prompt gamma rays" (not shown) and a (proportionally) large amount of energy.
A visual representation of an induced nuclear fission event where a slow-moving neutron is absorbed by the nucleus of a uranium-235 atom, which fissions into two fast-moving lighter elements (fission products) and additional neutrons. Most of the energy released is in the form of the kinetic velocities of the fission products and the neutrons.
Fission product yields by mass for thermal neutron fission of U-235, Pu-239, a combination of the two typical of current nuclear power reactors, and U-233 used in the thorium cycle.
The stages of binary fission in a liquid drop model. Energy input deforms the nucleus into a fat "cigar" shape, then a "peanut" shape, followed by binary fission as the two lobes exceed the short-range nuclear force attraction distance, then are pushed apart and away by their electrical charge. In the liquid drop model, the two fission fragments are predicted to be the same size. The nuclear shell model allows for them to differ in size, as usually experimentally observed.
Animation of a Coulomb explosion in the case of a cluster of positively charged nuclei, akin to a cluster of fission fragments. Hue level of color
is proportional to (larger) nuclei charge. Electrons (smaller) on this time-scale are seen only stroboscopically and the hue level is their kinetic energy
The "curve of binding energy": A graph of binding energy per nucleon of common isotopes.
A schematic nuclear fission chain reaction. 1. A uranium-235 atom absorbs a neutron and fissions into two new atoms (fission fragments), releasing three new neutrons and some binding energy. 2. One of those neutrons is absorbed by an atom of uranium-238 and does not continue the reaction. Another neutron is simply lost and does not collide with anything, also not continuing the reaction. However, the one neutron does collide with an atom of uranium-235, which then fissions and releases two neutrons and some binding energy. 3. Both of those neutrons collide with uranium-235 atoms, each of which fissions and releases between one and three neutrons, which can then continue the reaction.
The cooling towers of the Philippsburg Nuclear Power Plant, in Germany.
The mushroom cloud of the atomic bomb dropped on Nagasaki, Japan, on 9 August 1945 rose over 18 km above the bomb's hypocenter. An estimated 39,000 people were killed by the atomic bomb, of whom 23,145–28,113 were Japanese factory workers, 2,000 were Korean slave laborers, and 150 were Japanese combatants.
Hahn and Meitner in 1912
Experimental apparatus similar to that with which Otto Hahn and Fritz Strassmann discovered nuclear fission in 1938. The apparatus would not have been on the same table or in the same room.
Drawing of the first artificial reactor, Chicago Pile-1.

Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei.

Chemical compound

8 links

A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) composed of atoms from more than one element held together by chemical bonds.

Drifting smoke particles indicate the movement of the surrounding gas.

Gas

7 links

One of the four fundamental states of matter .

One of the four fundamental states of matter .

Drifting smoke particles indicate the movement of the surrounding gas.
Shuttle imagery of re-entry phase
184x184px
Random motion of gas particles results in diffusion.
21 April 1990 eruption of Mount Redoubt, Alaska, illustrating real gases not in thermodynamic equilibrium.
Boyle's equipment
Dalton's notation.
Compressibility factors for air.
Satellite view of weather pattern in vicinity of Robinson Crusoe Islands on 15 September 1999, shows a turbulent cloud pattern called a Kármán vortex street
Delta wing in wind tunnel. The shadows form as the indices of refraction change within the gas as it compresses on the leading edge of this wing.

A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide).