Depiction of the adenine–thymine Watson–Crick base pair
Graphical representation of the idealized human diploid karyotype, showing the organization of the genome into chromosomes. This drawing shows both the male (XY) and female (XX) versions of the 23rd chromosome pair. Chromosomes are shown aligned at their centromeres. The mitochondrial DNA is not shown.
Number of genes (orange) and base pairs (green, in millions) on each chromosome.
Human genes categorized by function of the transcribed proteins, given both as number of encoding genes and percentage of all genes.
TSC SNP distribution along the long arm of chromosome 22 (from https://web.archive.org/web/20130903043223/http://snp.cshl.org/ ). Each column represents a 1 Mb interval; the approximate cytogenetic position is given on the x-axis. Clear peaks and troughs of SNP density can be seen, possibly reflecting different rates of mutation, recombination and selection.
Populations with a high level of parental-relatedness result in a larger number of homozygous gene knockouts as compared to outbred populations.
A pedigree displaying a first-cousin mating (carriers both carrying heterozygous knockouts mating as marked by double line) leading to offspring possessing a homozygous gene knockout.

Haploid human genomes, which are contained in germ cells (the egg and sperm gamete cells created in the meiosis phase of sexual reproduction before fertilization) consist of 3,054,815,472 DNA base pairs (if X chromosome is used), while female diploid genomes (found in somatic cells) have twice the DNA content.

- Human genome

The haploid human genome (23 chromosomes) is estimated to be about 3.2 billion bases long and to contain 20,000–25,000 distinct protein-coding genes.

- Base pair
Depiction of the adenine–thymine Watson–Crick base pair

5 related topics

Alpha

The structure of the DNA double helix. The atoms in the structure are colour-coded by element and the detailed structures of two base pairs are shown in the bottom right.

DNA

Polymer composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses.

Polymer composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses.

The structure of the DNA double helix. The atoms in the structure are colour-coded by element and the detailed structures of two base pairs are shown in the bottom right.
Chemical structure of DNA; hydrogen bonds shown as dotted lines. Each end of the double helix has an exposed 5' phosphate on one strand and an exposed 3' hydroxyl group (—OH) on the other.
A section of DNA. The bases lie horizontally between the two spiraling strands ([[:File:DNA orbit animated.gif|animated version]]).
DNA major and minor grooves. The latter is a binding site for the Hoechst stain dye 33258.
From left to right, the structures of A, B and Z DNA
DNA quadruplex formed by telomere repeats. The looped conformation of the DNA backbone is very different from the typical DNA helix. The green spheres in the center represent potassium ions.
A covalent adduct between a metabolically activated form of benzo[a]pyrene, the major mutagen in tobacco smoke, and DNA
Location of eukaryote nuclear DNA within the chromosomes
T7 RNA polymerase (blue) producing an mRNA (green) from a DNA template (orange)
DNA replication: The double helix is unwound by a helicase and topo­iso­merase. Next, one DNA polymerase produces the leading strand copy. Another DNA polymerase binds to the lagging strand. This enzyme makes discontinuous segments (called Okazaki fragments) before DNA ligase joins them together.
Interaction of DNA (in orange) with histones (in blue). These proteins' basic amino acids bind to the acidic phosphate groups on DNA.
The lambda repressor helix-turn-helix transcription factor bound to its DNA target
The restriction enzyme EcoRV (green) in a complex with its substrate DNA
Recombination involves the breaking and rejoining of two chromosomes (M and F) to produce two rearranged chromosomes (C1 and C2).
The DNA structure at left (schematic shown) will self-assemble into the structure visualized by atomic force microscopy at right. DNA nanotechnology is the field that seeks to design nanoscale structures using the molecular recognition properties of DNA molecules.
Maclyn McCarty (left) shakes hands with Francis Crick and James Watson, co-originators of the double-helix model.
Pencil sketch of the DNA double helix by Francis Crick in 1953
A blue plaque outside The Eagle pub commemorating Crick and Watson

The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA.

The set of chromosomes in a cell makes up its genome; the human genome has approximately 3 billion base pairs of DNA arranged into 46 chromosomes.

A representation of the 3D structure of the protein myoglobin showing turquoise α-helices. This protein was the first to have its structure solved by X-ray crystallography. Toward the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).

Protein

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues.

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues.

A representation of the 3D structure of the protein myoglobin showing turquoise α-helices. This protein was the first to have its structure solved by X-ray crystallography. Toward the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).
John Kendrew with model of myoglobin in progress
Chemical structure of the peptide bond (bottom) and the three-dimensional structure of a peptide bond between an alanine and an adjacent amino acid (top/inset). The bond itself is made of the CHON elements.
Resonance structures of the peptide bond that links individual amino acids to form a protein polymer
A ribosome produces a protein using mRNA as template
The DNA sequence of a gene encodes the amino acid sequence of a protein
The crystal structure of the chaperonin, a huge protein complex. A single protein subunit is highlighted. Chaperonins assist protein folding.
Three possible representations of the three-dimensional structure of the protein triose phosphate isomerase. Left: All-atom representation colored by atom type. Middle: Simplified representation illustrating the backbone conformation, colored by secondary structure. Right: Solvent-accessible surface representation colored by residue type (acidic residues red, basic residues blue, polar residues green, nonpolar residues white).
Molecular surface of several proteins showing their comparative sizes. From left to right are: immunoglobulin G (IgG, an antibody), hemoglobin, insulin (a hormone), adenylate kinase (an enzyme), and glutamine synthetase (an enzyme).
The enzyme hexokinase is shown as a conventional ball-and-stick molecular model. To scale in the top right-hand corner are two of its substrates, ATP and glucose.
Ribbon diagram of a mouse antibody against cholera that binds a carbohydrate antigen
Proteins in different cellular compartments and structures tagged with green fluorescent protein (here, white)
Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein structure, in this case hemoglobin containing heme units

The mRNA is loaded onto the ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule, which carries the amino acid corresponding to the codon it recognizes.

The development of such tools has been driven by the large amount of genomic and proteomic data available for a variety of organisms, including the human genome.

Chemical structure of RNA

Nucleic acid sequence

Succession of bases signified by a series of a set of five different letters that indicate the order of nucleotides forming alleles within a DNA or RNA (GACU) molecule.

Succession of bases signified by a series of a set of five different letters that indicate the order of nucleotides forming alleles within a DNA or RNA (GACU) molecule.

Chemical structure of RNA
A series of codons in part of a mRNA molecule. Each codon consists of three nucleotides, usually representing a single amino acid.
A depiction of the genetic code, by which the information contained in nucleic acids are translated into amino acid sequences in proteins.
Electropherogram printout from automated sequencer for determining part of a DNA sequence
Genetic sequence in digital format.

The nucleobases are important in base pairing of strands to form higher-level secondary and tertiary structure such as the famed double helix.

The human genome is believed to contain around 20,000–25,000 genes.

Gregor Mendel

Gene

Basic unit of heredity and a sequence of nucleotides in DNA that encodes the synthesis of a gene product, either RNA or protein.

Basic unit of heredity and a sequence of nucleotides in DNA that encodes the synthesis of a gene product, either RNA or protein.

Gregor Mendel
Fluorescent microscopy image of a human female karyotype, showing 23 pairs of chromosomes. The DNA is stained red, with regions rich in housekeeping genes further stained in green. The largest chromosomes are around 10 times the size of the smallest.
Schematic of a single-stranded RNA molecule illustrating a series of three-base codons. Each three-nucleotide codon corresponds to an amino acid when translated to protein
Protein coding genes are transcribed to an mRNA intermediate, then translated to a functional protein. RNA-coding genes are transcribed to a functional non-coding RNA.
Inheritance of a gene that has two different alleles (blue and white). The gene is located on an autosomal chromosome. The white allele is recessive to the blue allele. The probability of each outcome in the children's generation is one quarter, or 25 percent.
A sequence alignment, produced by ClustalO, of mammalian histone proteins
Evolutionary fate of duplicate genes.
Depiction of numbers of genes for representative plants (green), vertebrates (blue), invertebrates (orange), fungi (yellow), bacteria (purple), and viruses (grey). An inset on the right shows the smaller genomes expanded 100-fold area-wise.
Gene functions in the minimal genome of the synthetic organism, Syn 3.
Comparison of conventional plant breeding with transgenic and cisgenic genetic modification.

Two chains of DNA twist around each other to form a DNA double helix with the phosphate-sugar backbone spiraling around the outside, and the bases pointing inwards with adenine base pairing to thymine and guanine to cytosine.

However, more recent analyses suggest that, although protein-coding DNA makes up barely 2% of the human genome, about 80% of the bases in the genome may be expressed, so the term "junk DNA" may be a misnomer.

Diagram of a replicated and condensed metaphase eukaryotic chromosome. (1) Chromatid – one of the two identical parts of the chromosome after S phase. (2) Centromere – the point where the two chromatids touch. (3) Short arm (p). (4) Long arm (q).

Chromosome

Long DNA molecule with part or all of the genetic material of an organism.

Long DNA molecule with part or all of the genetic material of an organism.

Diagram of a replicated and condensed metaphase eukaryotic chromosome. (1) Chromatid – one of the two identical parts of the chromosome after S phase. (2) Centromere – the point where the two chromatids touch. (3) Short arm (p). (4) Long arm (q).
Organization of DNA in a eukaryotic cell
The major structures in DNA compaction: DNA, the nucleosome, the 10 nm "beads-on-a-string" fibre, the 30 nm fibre and the metaphase chromosome.
398x398px
Human chromosomes during metaphase
Stages of early mitosis in a vertebrate cell with micrographs of chromatids
The 23 human chromosome territories during prometaphase in fibroblast cells
Karyogram of a human male
In Down syndrome, there are three copies of chromosome 21.

The chromosomes of most bacteria, which some authors prefer to call genophores, can range in size from only 130,000 base pairs in the endosymbiotic bacteria Candidatus Hodgkinia cicadicola and Candidatus Tremblaya princeps, to more than 14,000,000 base pairs in the soil-dwelling bacterium Sorangium cellulosum.

Sequencing of the human genome has provided a great deal of information about each of the chromosomes.