Depiction of the adenine–thymine Watson–Crick base pair
Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red.

Dictated by specific hydrogen bonding patterns, "Watson–Crick" (or "Watson–Crick–Franklin") base pairs (guanine–cytosine and adenine–thymine) allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence.

- Base pair

The mutations caused by thymine deficiency appear to occur only at AT base pair sites in DNA and are often AT to GC transition mutations.

- Thymine
Depiction of the adenine–thymine Watson–Crick base pair

8 related topics

Alpha

The structure of the DNA double helix. The atoms in the structure are colour-coded by element and the detailed structures of two base pairs are shown in the bottom right.

DNA

Polymer composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses.

Polymer composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses.

The structure of the DNA double helix. The atoms in the structure are colour-coded by element and the detailed structures of two base pairs are shown in the bottom right.
Chemical structure of DNA; hydrogen bonds shown as dotted lines. Each end of the double helix has an exposed 5' phosphate on one strand and an exposed 3' hydroxyl group (—OH) on the other.
A section of DNA. The bases lie horizontally between the two spiraling strands ([[:File:DNA orbit animated.gif|animated version]]).
DNA major and minor grooves. The latter is a binding site for the Hoechst stain dye 33258.
From left to right, the structures of A, B and Z DNA
DNA quadruplex formed by telomere repeats. The looped conformation of the DNA backbone is very different from the typical DNA helix. The green spheres in the center represent potassium ions.
A covalent adduct between a metabolically activated form of benzo[a]pyrene, the major mutagen in tobacco smoke, and DNA
Location of eukaryote nuclear DNA within the chromosomes
T7 RNA polymerase (blue) producing an mRNA (green) from a DNA template (orange)
DNA replication: The double helix is unwound by a helicase and topo­iso­merase. Next, one DNA polymerase produces the leading strand copy. Another DNA polymerase binds to the lagging strand. This enzyme makes discontinuous segments (called Okazaki fragments) before DNA ligase joins them together.
Interaction of DNA (in orange) with histones (in blue). These proteins' basic amino acids bind to the acidic phosphate groups on DNA.
The lambda repressor helix-turn-helix transcription factor bound to its DNA target
The restriction enzyme EcoRV (green) in a complex with its substrate DNA
Recombination involves the breaking and rejoining of two chromosomes (M and F) to produce two rearranged chromosomes (C1 and C2).
The DNA structure at left (schematic shown) will self-assemble into the structure visualized by atomic force microscopy at right. DNA nanotechnology is the field that seeks to design nanoscale structures using the molecular recognition properties of DNA molecules.
Maclyn McCarty (left) shakes hands with Francis Crick and James Watson, co-originators of the double-helix model.
Pencil sketch of the DNA double helix by Francis Crick in 1953
A blue plaque outside The Eagle pub commemorating Crick and Watson

Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose, and a phosphate group.

The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA.

Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red.

Nucleobase

Nucleobases, also known as nitrogenous bases or often simply bases, are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basic building blocks of nucleic acids.

Nucleobases, also known as nitrogenous bases or often simply bases, are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basic building blocks of nucleic acids.

Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red.
Purine nucleobases are fused-ring molecules.
Pyrimidine nucleobases are simple ring molecules.
Chemical structure of DNA, showing four nucleobase pairs produced by eight nucleotides: adenine (A) is joined to thymine (T), and guanine (G) is joined to cytosine (C). + This structure also shows the directionality of each of the two phosphate-deoxyribose backbones, or strands. The 5' to 3' (read "5 prime to 3 prime") directions are: down the strand on the left, and up the strand on the right. The strands twist around each other to form a double helix structure.

The ability of nucleobases to form base pairs and to stack one upon another leads directly to long-chain helical structures such as ribonucleic acid (RNA) and deoxyribonucleic acid (DNA).

Five nucleobases—adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U)—are called primary or canonical.

Pinner's 1885 structure for pyrimidine

Pyrimidine

Aromatic heterocyclic organic compound similar to pyridine.

Aromatic heterocyclic organic compound similar to pyridine.

Pinner's 1885 structure for pyrimidine
The pyrimidine nitrogen bases found in DNA and RNA.

In nucleic acids, three types of nucleobases are pyrimidine derivatives: cytosine (C), thymine (T), and uracil (U).

These hydrogen bonding modes are for classical Watson–Crick base pairing.

A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). This is a single strand of RNA that folds back upon itself.

RNA

Polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes.

Polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes.

A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). This is a single strand of RNA that folds back upon itself.
Three-dimensional representation of the 50S ribosomal subunit. Ribosomal RNA is in ochre, proteins in blue. The active site is a small segment of rRNA, indicated in red.
Watson-Crick base pairs in a siRNA (hydrogen atoms are not shown)
Structure of a fragment of an RNA, showing a guanosyl subunit.
Secondary structure of a telomerase RNA.
Structure of a hammerhead ribozyme, a ribozyme that cuts RNA
Uridine to pseudouridine is a common RNA modification.
Double-stranded RNA
Robert W. Holley, left, poses with his research team.

The complementary base to adenine in DNA is thymine, whereas in RNA, it is uracil, which is an unmethylated form of thymine.

This antisense-based process involves steps that first process the RNA so that it can base-pair with a region of its target mRNAs.

Chemical structure of uridine

Uracil

One of the four nucleobases in the nucleic acid RNA that are represented by the letters A, G, C and U. The others are adenine (A), cytosine (C), and guanine (G).

One of the four nucleobases in the nucleic acid RNA that are represented by the letters A, G, C and U. The others are adenine (A), cytosine (C), and guanine (G).

Chemical structure of uridine

In DNA, the uracil nucleobase is replaced by thymine.

In RNA, uracil base-pairs with adenine and replaces thymine during DNA transcription.

Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red.

Cytosine

Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red.

Cytosine (symbol C or Cyt) is one of the four nucleobases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA).

In Watson-Crick base pairing, it forms three hydrogen bonds with guanine.

Nucleic acids RNA (left) and DNA (right).

Nucleic acid

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life.

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life.

Nucleic acids RNA (left) and DNA (right).
The Swiss scientist Friedrich Miescher discovered nucleic acid first naming it as nuclein, in 1868. Later, he raised the idea that it could be involved in heredity.

Strings of nucleotides are bonded to form helical backbones—typically, one for RNA, two for DNA—and assembled into chains of base-pairs selected from the five primary, or canonical, nucleobases, which are: adenine, cytosine, guanine, thymine, and uracil.

Using amino acids and the process known as protein synthesis, the specific sequencing in DNA of these nucleobase-pairs enables storing and transmitting coded instructions as genes.

DNA replication: The double helix is un'zipped' and unwound, then each separated strand (turquoise) acts as a template for replicating a new partner strand (green). Nucleotides (bases) are matched to synthesize the new partner strands into two new double helices.

DNA replication

Biological process of producing two identical replicas of DNA from one original DNA molecule.

Biological process of producing two identical replicas of DNA from one original DNA molecule.

DNA replication: The double helix is un'zipped' and unwound, then each separated strand (turquoise) acts as a template for replicating a new partner strand (green). Nucleotides (bases) are matched to synthesize the new partner strands into two new double helices.
DNA polymerases adds nucleotides to the 3′ end of a strand of DNA. If a mismatch is accidentally incorporated, the polymerase is inhibited from further extension. Proofreading removes the mismatched nucleotide and extension continues.
Overview of the steps in DNA replication
Steps in DNA synthesis
Role of initiators for initiation of DNA replication.
Formation of pre-replication complex.
Scheme of the replication fork.
a: template, b: leading strand, c: lagging strand, d: replication fork, e: primer, f: Okazaki fragments
Many enzymes are involved in the DNA replication fork.
The assembled human DNA clamp, a trimer of the protein PCNA.
E. coli Replisome. Notably, the DNA on lagging strand forms a loop. The exact structure of replisome is not well understood.
The cell cycle of eukaryotic cells.
Dam methylates adenine of GATC sites after replication.
Replication fork restarts by homologous recombination following replication stress
Epigenetic consequences of nucleosome reassembly defects at stalled replication forks

The four types of nucleotide correspond to the four nucleobases adenine, cytosine, guanine, and thymine, commonly abbreviated as A, C, G and T. Adenine and guanine are purine bases, while cytosine and thymine are pyrimidines.

Nucleobases are matched between strands through hydrogen bonds to form base pairs.