A report on Cardiac muscle and Sinoatrial node

Sinoatrial node shown at 1. The rest of the conduction system of the heart is shown in blue.
3D rendering showing thick myocardium within the heart wall.
Figure 2: Low magnification stained image of the SA node (center-right on image) and its surrounding tissue. The SA node surrounds the sinoatrial nodal artery, seen as the open lumen. Cardiac muscle cells of the right atrium can be seen to the left of the node, and fat tissue to the right.
The swirling musculature of the heart ensures effective pumping of blood.
Figure 3: Sinoatrial node action potential waveform, outlining major ion currents involved (downward deflection indicates ions moving into the cell, upwards deflection indicates ions flowing out of the cell).
Cardiac muscle
Schematic representation of the atrioventricular bundle
Illustration of a cardiac muscle cell.
Intercalated discs are part of the cardiac muscle cell sarcolemma and they contain gap junctions and desmosomes.
Dog cardiac muscle (400X)

They are located in the sinoatrial node positioned on the wall of the right atrium, near the entrance of the superior vena cava.

- Cardiac muscle

The main role of a sinoatrial node cell is to initiate action potentials of the heart that can pass through cardiac muscle cells and cause contraction.

- Sinoatrial node

8 related topics with Alpha

Overall

Heart

4 links

Muscular organ in most animals.

Muscular organ in most animals.

Human heart during an autopsy
Computer-generated animation of a beating human heart
The human heart is in the middle of the thorax, with its apex pointing to the left.
Heart being dissected showing right and left ventricles, from above
Frontal section showing papillary muscles attached to the tricuspid valve on the right and to the mitral valve on the left via chordae tendineae.
Layers of the heart wall, including visceral and parietal pericardium
The swirling pattern of myocardium helps the heart pump effectively
Arterial supply to the heart (red), with other areas labelled (blue).
Autonomic innervation of the heart
Development of the human heart during the first eight weeks (top) and the formation of the heart chambers (bottom). In this figure, the blue and red colors represent blood inflow and outflow (not venous and arterial blood). Initially, all venous blood flows from the tail/atria to the ventricles/head, a very different pattern from that of an adult.
Blood flow through the valves
The cardiac cycle as correlated to the ECG
The x-axis reflects time with a recording of the heart sounds. The y-axis represents pressure.
Transmission of a cardiac action potential through the heart's conduction system
Conduction system of the heart
The prepotential is due to a slow influx of sodium ions until the threshold is reached followed by a rapid depolarization and repolarization. The prepotential accounts for the membrane reaching threshold and initiates the spontaneous depolarization and contraction of the cell; there is no resting potential.
3D echocardiogram showing the mitral valve (right), tricuspid and mitral valves (top left) and aortic valve (top right).
The closure of the heart valves causes the heart sounds.
Cardiac cycle shown against ECG
Heart and its blood vessels, by Leonardo da Vinci, 15th century
Animated heart
Elize Ryd making a heart sign at a concert in 2018
The tube-like heart (green) of the mosquito Anopheles gambiae extends horizontally across the body, interlinked with the diamond-shaped wing muscles (also green) and surrounded by pericardial cells (red). Blue depicts cell nuclei.
Basic arthropod body structure – heart shown in red
The human heart viewed from the front
The human heart viewed from behind
The coronary circulation
The human heart viewed from the front and from behind
Frontal section of the human heart
An anatomical specimen of the heart
Heart illustration with circulatory system
Animated Heart 3d Model Rendered in Computer

The wall of the heart is made up of three layers: epicardium, myocardium, and endocardium.

The heart pumps blood with a rhythm determined by a group of pacemaker cells in the sinoatrial node.

Isolated heart conduction system showing Purkinje fibers

Purkinje fibers

4 links

The Purkinje fibers (often incorrectly ; Purkinje tissue or subendocardial branches) are located in the inner ventricular walls of the heart, just beneath the endocardium in a space called the subendocardium.

The Purkinje fibers (often incorrectly ; Purkinje tissue or subendocardial branches) are located in the inner ventricular walls of the heart, just beneath the endocardium in a space called the subendocardium.

Isolated heart conduction system showing Purkinje fibers
Purkinje fiber just beneath the endocardium.

They are larger than cardiomyocytes with fewer myofibrils and many mitochondria.

The electrical origin of atrial Purkinje fibers arrives from the sinoatrial node.

As an action potential (nerve impulse) travels down an axon there is a change in electric polarity across the membrane of the axon. In response to a signal from another neuron, sodium- (Na+) and potassium- (K+) gated ion channels open and close as the membrane reaches its threshold potential. Na+ channels open at the beginning of the action potential, and Na+ moves into the axon, causing depolarization. Repolarization occurs when the K+ channels open and K+ moves out of the axon, creating a change in electric polarity between the outside of the cell and the inside. The impulse travels down the axon in one direction only, to the axon terminal where it signals other neurons.

Action potential

5 links

Action potential occurs when the membrane potential of a specific cell location rapidly rises and falls.

Action potential occurs when the membrane potential of a specific cell location rapidly rises and falls.

As an action potential (nerve impulse) travels down an axon there is a change in electric polarity across the membrane of the axon. In response to a signal from another neuron, sodium- (Na+) and potassium- (K+) gated ion channels open and close as the membrane reaches its threshold potential. Na+ channels open at the beginning of the action potential, and Na+ moves into the axon, causing depolarization. Repolarization occurs when the K+ channels open and K+ moves out of the axon, creating a change in electric polarity between the outside of the cell and the inside. The impulse travels down the axon in one direction only, to the axon terminal where it signals other neurons.
Shape of a typical action potential. The membrane potential remains near a baseline level until at some point in time, it abruptly spikes upward and then rapidly falls.
Approximate plot of a typical action potential shows its various phases as the action potential passes a point on a cell membrane. The membrane potential starts out at approximately −70 mV at time zero. A stimulus is applied at time = 1 ms, which raises the membrane potential above −55 mV (the threshold potential). After the stimulus is applied, the membrane potential rapidly rises to a peak potential of +40 mV at time = 2 ms. Just as quickly, the potential then drops and overshoots to −90 mV at time = 3 ms, and finally the resting potential of −70 mV is reestablished at time = 5 ms.
Action potential propagation along an axon
Ion movement during an action potential.
Key: a) Sodium (Na+) ion. b) Potassium (K+) ion. c) Sodium channel. d) Potassium channel. e) Sodium-potassium pump. In the stages of an action potential, the permeability of the membrane of the neuron changes. At the resting state (1), sodium and potassium ions have limited ability to pass through the membrane, and the neuron has a net negative charge inside. Once the action potential is triggered, the depolarization (2) of the neuron activates sodium channels, allowing sodium ions to pass through the cell membrane into the cell, resulting in a net positive charge in the neuron relative to the extracellular fluid. After the action potential peak is reached, the neuron begins repolarization (3), where the sodium channels close and potassium channels open, allowing potassium ions to cross the membrane into the extracellular fluid, returning the membrane potential to a negative value. Finally, there is a refractory period (4), during which the voltage-dependent ion channels are inactivated while the Na+ and K+ ions return to their resting state distributions across the membrane (1), and the neuron is ready to repeat the process for the next action potential.
When an action potential arrives at the end of the pre-synaptic axon (top), it causes the release of neurotransmitter molecules that open ion channels in the post-synaptic neuron (bottom). The combined excitatory and inhibitory postsynaptic potentials of such inputs can begin a new action potential in the post-synaptic neuron.
In pacemaker potentials, the cell spontaneously depolarizes (straight line with upward slope) until it fires an action potential.
In saltatory conduction, an action potential at one node of Ranvier causes inwards currents that depolarize the membrane at the next node, provoking a new action potential there; the action potential appears to "hop" from node to node.
Comparison of the conduction velocities of myelinated and unmyelinated axons in the cat. The conduction velocity v of myelinated neurons varies roughly linearly with axon diameter d (that is, v ∝ d), whereas the speed of unmyelinated neurons varies roughly as the square root (v ∝√d). The red and blue curves are fits of experimental data, whereas the dotted lines are their theoretical extrapolations.
Cable theory's simplified view of a neuronal fiber. The connected RC circuits correspond to adjacent segments of a passive neurite. The extracellular resistances re (the counterparts of the intracellular resistances ri) are not shown, since they are usually negligibly small; the extracellular medium may be assumed to have the same voltage everywhere.
Electrical synapses between excitable cells allow ions to pass directly from one cell to another, and are much faster than chemical synapses.
Phases of a cardiac action potential. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing eflux of potassium ions. The characteristic plateau ("2") results from the opening of voltage-sensitive calcium channels.
Giant axons of the longfin inshore squid (Doryteuthis pealeii) were crucial for scientists to understand the action potential.
As revealed by a patch clamp electrode, an ion channel has two states: open (high conductance) and closed (low conductance).
Tetrodotoxin is a lethal toxin found in pufferfish that inhibits the voltage-sensitive sodium channel, halting action potentials.
Image of two Purkinje cells (labeled as A) drawn by Santiago Ramón y Cajal in 1899. Large trees of dendrites feed into the soma, from which a single axon emerges and moves generally downwards with a few branch points. The smaller cells labeled B are granule cells.
Ribbon diagram of the sodium–potassium pump in its E2-Pi state. The estimated boundaries of the lipid bilayer are shown as blue (intracellular) and red (extracellular) planes.
Equivalent electrical circuit for the Hodgkin–Huxley model of the action potential. Im and Vm represent the current through, and the voltage across, a small patch of membrane, respectively. The Cm represents the capacitance of the membrane patch, whereas the four g's represent the conductances of four types of ions. The two conductances on the left, for potassium (K) and sodium (Na), are shown with arrows to indicate that they can vary with the applied voltage, corresponding to the voltage-sensitive ion channels. The two conductances on the right help determine the resting membrane potential.

The cardiac pacemaker cells of the sinoatrial node in the heart provide a good example.

Using voltage-sensitive dyes, action potentials have been optically recorded from a tiny patch of cardiomyocyte membrane.

Image showing the cardiac pacemaker or SA node, the normal pacemaker within the electrical conduction system of the heart.

Cardiac pacemaker

3 links

Image showing the cardiac pacemaker or SA node, the normal pacemaker within the electrical conduction system of the heart.
Schematic representation of the sinoatrial node and the atrioventricular bundle of His. The location of the SA node is shown in blue. The bundle, represented in red, originates near the orifice of the coronary sinus, undergoes slight enlargement to form the AV node. The AV node tapers down into the bundle of HIS, which passes into the ventricular septum and divides into two bundle branches, the left and right bundles. The ultimate distribution cannot be completely shown in this diagram.

The contraction of cardiac muscle (heart muscle) in all animals is initiated by electrical impulses known as action potentials.

In most humans, the concentration of pacemaker cells in the sinoatrial (SA) node is the natural pacemaker, and the resultant rhythm is a sinus rhythm.

Heart; conduction system. 1. SA node. 2. AV node. 3. Bundle of His. 8. Septum

Electrical conduction system of the heart

3 links

Heart; conduction system. 1. SA node. 2. AV node. 3. Bundle of His. 8. Septum
Overview of the system of electrical conduction which maintains the rhythmical contraction of the heart
Principle of ECG formation. Note that the red lines represent the depolarization wave, not bloodflow.
Different wave shapes generated by different parts of the heart's action potential

The electrical conduction system of the heart transmits signals generated usually by the sinoatrial node in the heart to cause contraction of the heart muscle.

Drugs affecting the cardiac action potential. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing efflux of potassium ions. The characteristic plateau ("2") results from the opening of voltage-sensitive calcium channels.

Cardiac action potential

2 links

Drugs affecting the cardiac action potential. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing efflux of potassium ions. The characteristic plateau ("2") results from the opening of voltage-sensitive calcium channels.
Different shapes of the cardiac action potential in various parts of the heart
Action potentials recorded from sheep atrial and ventricular cardiomyocytes with phases shown. Ion currents approximate to ventricular action potential.
Figure 2a: Ventricular action potential (left) and sinoatrial node action potential (right) waveforms. The main ionic currents responsible for the phases are below (upwards deflections represent ions flowing out of cell, downwards deflection represents inward current).
Figure 4: The electrical conduction system of the heart

The cardiac action potential is a brief change in voltage (membrane potential) across the cell membrane of heart cells.

In healthy hearts, these cells are found in the right atrium and are called the sinoatrial node (SAN; see below for more details).

General structure of a skeletal muscle cell and neuromuscular junction: 1. Axon

2. Neuromuscular junction

3. Skeletal muscle fiber

4. Myofibril

Muscle cell

2 links

General structure of a skeletal muscle cell and neuromuscular junction: 1. Axon

2. Neuromuscular junction

3. Skeletal muscle fiber

4. Myofibril
Diagram of skeletal muscle fiber structure

A muscle cell is also known as a myocyte when referring to either a cardiac muscle cell (cardiomyocyte), or a smooth muscle cell as these are both small cells.

Specialized cardiomyocytes in the sinoatrial node generate electrical impulses that control the heart rate.

Types of muscle contractions

Muscle contraction

1 links

Activation of tension-generating sites within muscle cells.

Activation of tension-generating sites within muscle cells.

Types of muscle contractions
In vertebrate animals, there are three types of muscle tissues: 1) skeletal, 2) smooth, and 3) cardiac
Organization of skeletal muscle
Structure of neuromuscular junction.
Sliding filament theory: A sarcomere in relaxed (above) and contracted (below) positions
Cross-bridge cycle
Muscle length versus isometric force
Force–velocity relationship: right of the vertical axis concentric contractions (the muscle is shortening), left of the axis eccentric contractions (the muscle is lengthened under load); power developed by the muscle in red. Since power is equal to force times velocity, the muscle generates no power at either isometric force (due to zero velocity) or maximal velocity (due to zero force). The optimal shortening velocity for power generation is approximately one-third of maximum shortening velocity.
Swellings called varicosities belonging to an autonomic neuron innervate the smooth muscle cells.
Cardiac muscle
Key proteins involved in cardiac calcium cycling and excitation-contraction coupling
A simplified image showing earthworm movement via peristalsis
Asynchronous muscles power flight in most insect species. a: Wings b: Wing joint c: Dorsoventral muscles power the upstroke d: Dorsolongitudinal muscles (DLM) power the downstroke. The DLMs are oriented out of the page.
Electrodes touch a frog, and the legs twitch into the upward position

Unlike skeletal muscle, the contractions of smooth and cardiac muscles are myogenic (meaning that they are initiated by the smooth or heart muscle cells themselves instead of being stimulated by an outside event such as nerve stimulation), although they can be modulated by stimuli from the autonomic nervous system.

Excitation-contraction coupling in cardiac muscle cells occurs when an action potential is initiated by pacemaker cells in the sinoatrial node or Atrioventricular node and conducted to all cells in the heart via gap junctions.