Illustration of a Eukaryotic cell membrane
(A) Electron micrograph of Halothiobacillus neapolitanus cells, arrows highlight carboxysomes. (B) Image of intact carboxysomes isolated from H. neapolitanus. Scale bars are 100 nm.
This fluid lipid bilayer cross section is made up entirely of phosphatidylcholine.
Comparison of Eukaryotes vs. Prokaryotes
Structure of Candidatus Brocadia anammoxidans, showing an anammoxosome and intracytoplasmic membrane
The three main structures phospholipids form in solution; the liposome (a closed bilayer), the micelle and the bilayer.
Examples of the major membrane phospholipids and glycolipids: phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer).
Schematic cross sectional profile of a typical lipid bilayer. There are three distinct regions: the fully hydrated headgroups, the fully dehydrated alkane core and a short intermediate region with partial hydration. Although the head groups are neutral, they have significant dipole moments that influence the molecular arrangement.
A detailed diagram of the cell membrane
TEM image of a bacterium. The furry appearance on the outside is due to a coat of long-chain sugars attached to the cell membrane. This coating helps trap water to prevent the bacterium from becoming dehydrated.
Illustration depicting cellular diffusion
Diagram showing the effect of unsaturated lipids on a bilayer. The lipids with an unsaturated tail (blue) disrupt the packing of those with only saturated tails (black). The resulting bilayer has more free space and is, as a consequence, more permeable to water and other small molecules.
Diagram of the arrangement of amphipathic lipid molecules to form a lipid bilayer. The yellow polar head groups separate the grey hydrophobic tails from the aqueous cytosolic and extracellular environments.
Illustration of a GPCR signaling protein. In response to a molecule such as a hormone binding to the exterior domain (blue) the GPCR changes shape and catalyzes a chemical reaction on the interior domain (red). The gray feature is the surrounding bilayer.
Alpha intercalated cell
Transmission Electron Microscope (TEM) image of a lipid vesicle. The two dark bands around the edge are the two leaflets of the bilayer. Historically, similar images confirmed that the cell membrane is a bilayer
Diagram of the Cell Membrane's structures.
Human red blood cells viewed through a fluorescence microscope. The cell membrane has been stained with a fluorescent dye. Scale bar is 20μm.
3d-Adapted AFM images showing formation of transmembrane pores (holes) in supported lipid bilayer
Illustration of a typical AFM scan of a supported lipid bilayer. The pits are defects in the bilayer, exposing the smooth surface of the substrate underneath.
Structure of a potassium ion channel. The alpha helices penetrate the bilayer (boundaries indicated by red and blue lines), opening a hole through which potassium ions can flow
Schematic illustration of pinocytosis, a type of endocytosis
Exocytosis of outer membrane vesicles (MV) liberated from inflated periplasmic pockets (p) on surface of human Salmonella 3,10:r:- pathogens docking on plasma membrane of macrophage cells (M) in chicken ileum, for host-pathogen signaling in vivo.
Schematic showing two possible conformations of the lipids at the edge of a pore. In the top image the lipids have not rearranged, so the pore wall is hydrophobic. In the bottom image some of the lipid heads have bent over, so the pore wall is hydrophilic.
Illustration of lipid vesicles fusing showing two possible outcomes: hemifusion and full fusion. In hemifusion, only the outer bilayer leaflets mix. In full fusion both leaflets as well as the internal contents mix.
Schematic illustration of the process of fusion through stalk formation.
Diagram of the action of SNARE proteins docking a vesicle for exocytosis. Complementary versions of the protein on the vesicle and the target membrane bind and wrap around each other, drawing the two bilayers close together in the process.

The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols (a lipid component) interspersed between them, maintaining appropriate membrane fluidity at various temperatures.

- Cell membrane

Organelles are either separately enclosed within their own lipid bilayers (also called membrane-bound organelles) or are spatially distinct functional units without a surrounding lipid bilayer (non-membrane bound organelles).

- Organelle

The cell membranes of almost all organisms and many viruses are made of a lipid bilayer, as are the nuclear membrane surrounding the cell nucleus, and membranes of the membrane-bound organelles in the cell.

- Lipid bilayer

Eukaryotic cells are structurally complex, and by definition are organized, in part, by interior compartments that are themselves enclosed by lipid membranes that resemble the outermost cell membrane.

- Organelle

The cytoskeleton is found underlying the cell membrane in the cytoplasm and provides a scaffolding for membrane proteins to anchor to, as well as forming organelles that extend from the cell.

- Cell membrane
Illustration of a Eukaryotic cell membrane

3 related topics with Alpha

Overall

Onion (Allium cepa) root cells in different phases of the cell cycle (drawn by E. B. Wilson, 1900)

Cell (biology)

2 links

Basic structural and functional unit of life forms.

Basic structural and functional unit of life forms.

Onion (Allium cepa) root cells in different phases of the cell cycle (drawn by E. B. Wilson, 1900)
Structure of a typical prokaryotic cell
Structure of a typical animal cell
Structure of a typical plant cell
Detailed diagram of lipid bilayer of cell membrane
A fluorescent image of an endothelial cell. Nuclei are stained blue, mitochondria are stained red, and microfilaments are stained green.
Deoxyribonucleic acid (DNA)
Human cancer cells, specifically HeLa cells, with DNA stained blue. The central and rightmost cell are in interphase, so their DNA is diffuse and the entire nuclei are labelled. The cell on the left is going through mitosis and its chromosomes have condensed.
Diagram of the endomembrane system
Prokaryotes divide by binary fission, while eukaryotes divide by mitosis or meiosis.
An outline of the catabolism of proteins, carbohydrates and fats
An overview of protein synthesis.
Within the nucleus of the cell (light blue), genes (DNA, dark blue) are transcribed into RNA. This RNA is then subject to post-transcriptional modification and control, resulting in a mature mRNA (red) that is then transported out of the nucleus and into the cytoplasm (peach), where it undergoes translation into a protein. mRNA is translated by ribosomes (purple) that match the three-base codons of the mRNA to the three-base anti-codons of the appropriate tRNA. Newly synthesized proteins (black) are often further modified, such as by binding to an effector molecule (orange), to become fully active.
Staining of a Caenorhabditis elegans highlights the nuclei of its cells.
Stromatolites are left behind by cyanobacteria, also called blue-green algae. They are the oldest known fossils of life on Earth. This one-billion-year-old fossil is from Glacier National Park in the United States.
Robert Hooke's drawing of cells in cork, 1665

Every cell consists of a cytoplasm enclosed within a membrane, which contains many biomolecules such as proteins and nucleic acids.

They are simpler and smaller than eukaryotic cells, and lack a nucleus, and other membrane-bound organelles.

This membrane serves to separate and protect a cell from its surrounding environment and is made mostly from a double layer of phospholipids, which are amphiphilic (partly hydrophobic and partly hydrophilic).

Cross-sectional view of the structures that can be formed by phospholipids in an aqueous solution

Biological membrane

1 links

Selectively permeable membrane that separates cell from the external environment or creates intracellular compartments.

Selectively permeable membrane that separates cell from the external environment or creates intracellular compartments.

Cross-sectional view of the structures that can be formed by phospholipids in an aqueous solution
A fluid membrane model of the phospholipid bilayer.

Biological membranes, in the form of eukaryotic cell membranes, consist of a phospholipid bilayer with embedded, integral and peripheral proteins used in communication and transportation of chemicals and ions.

Most organelles are defined by such membranes, and are called membrane-bound organelles.

Eukaryote

1 links

Eukaryotes are organisms whose cells have a nucleus enclosed within a nuclear envelope.

Eukaryotes are organisms whose cells have a nucleus enclosed within a nuclear envelope.

The endomembrane system and its components
Simplified structure of a mitochondrion
Longitudinal section through the flagellum of Chlamydomonas reinhardtii
Structure of a typical animal cell
Structure of a typical plant cell
Fungal Hyphae cells: 1 – hyphal wall, 2 – septum, 3 – mitochondrion, 4 – vacuole, 5 – ergosterol crystal, 6 – ribosome, 7 – nucleus, 8 – endoplasmic reticulum, 9 – lipid body, 10 – plasma membrane, 11 – spitzenkörper, 12 – Golgi apparatus
This diagram illustrates the twofold cost of sex. If each individual were to contribute the same number of offspring (two), (a) the sexual population remains the same size each generation, where the (b) asexual population doubles in size each generation.
Phylogenetic and symbiogenetic tree of living organisms, showing a view of the origins of eukaryotes and prokaryotes
One hypothesis of eukaryotic relationships – the Opisthokonta group includes both animals (Metazoa) and fungi, plants (Plantae) are placed in Archaeplastida.
A pie chart of described eukaryote species (except for Excavata), together with a tree showing possible relationships between the groups
The three-domains tree and the Eocyte hypothesis
Phylogenetic tree showing a possible relationship between the eukaryotes and other forms of life; eukaryotes are colored red, archaea green and bacteria blue
Eocyte tree.
Diagram of the origin of life with the Eukaryotes appearing early, not derived from Prokaryotes, as proposed by Richard Egel in 2012. This view implies that the UCA was relatively large and complex.

Eukaryotic cells typically contain other membrane-bound organelles such as mitochondria and Golgi apparatus; and chloroplasts can be found in plants and algae.

They have two surrounding membranes, each a phospholipid bi-layer; the inner of which is folded into invaginations called cristae where aerobic respiration takes place.

The cells of plants and algae, fungi and most chromalveolates have a cell wall, a layer outside the cell membrane, providing the cell with structural support, protection, and a filtering mechanism.