A report on MetalNonmetal and Chemical element

Iron, shown here as fragments and a 1 cm3 cube, is an example of a chemical element that is a metal.
Periodic table highlighting the first row of each block. Helium (He), as a noble gas, is normally shown over neon (Ne) with the rest of the noble gases. The elements within scope of this article are inside the thick black borders. The status of oganesson (Og, element 118) is not yet known.
The chemical elements ordered in the periodic table
A metal in the form of a gravy boat made from stainless steel, an alloy largely composed of iron, carbon, and chromium
Electronegativity values of the group 16 chalcogen elements showing a W-shaped alternation or secondary periodicity going down the group
Estimated distribution of dark matter and dark energy in the universe. Only the fraction of the mass and energy in the universe labeled "atoms" is composed of chemical elements.
Gallium crystals
Modern periodic table extract showing nonmetal subclasses.
<hr style="color:white;background-color:white">
† moderately strong oxidising agent
‡ strong oxidising agent
Periodic table showing the cosmogenic origin of each element in the Big Bang, or in large or small stars. Small stars can produce certain elements up to sulfur, by the alpha process. Supernovae are needed to produce "heavy" elements (those beyond iron and nickel) rapidly by neutron buildup, in the r-process. Certain large stars slowly produce other elements heavier than iron, in the s-process; these may then be blown into space in the off-gassing of planetary nebulae
A metal rod with a hot-worked eyelet. Hot-working exploits the capacity of metal to be plastically deformed.
A small (about 2 cm long) piece of rapidly melting argon ice
Abundances of the chemical elements in the Solar System. Hydrogen and helium are most common, from the Big Bang. The next three elements (Li, Be, B) are rare because they are poorly synthesized in the Big Bang and also in stars. The two general trends in the remaining stellar-produced elements are: (1) an alternation of abundance in elements as they have even or odd atomic numbers (the Oddo-Harkins rule), and (2) a general decrease in abundance as elements become heavier. Iron is especially common because it represents the minimum energy nuclide that can be made by fusion of helium in supernovae.
Samples of babbitt metal, an alloy of tin, antimony, and copper, used in bearings to reduce friction
A cluster of purple fluorite, a fluorine mineral, between two quartzes
Mendeleev's 1869 periodic table: An experiment on a system of elements. Based on their atomic weights and chemical similarities.
A sculpture cast in nickel silver—an alloy of copper, nickel, and zinc that looks like silver
Selenium conducts electricity around 1,000 times better when light falls on it, a property used since the mid-1870s in light-sensing applications.
Dmitri Mendeleev
Rhodium, a noble metal, shown here as 1 g of powder, a 1 g pressed cylinder, and a 1 g pellet
A crystal of realgar, also known as "ruby sulphur" or "ruby of arsenic", an arsenic sulfide mineral As4S4
Henry Moseley
A sample of diaspore, an aluminum oxide hydroxide mineral, α-AlO(OH)
Brownish crystals of buckminsterfullerene С60, a semiconducting allotrope of carbon
A neodymium compound alloy magnet of composition Nd2Fe14B on a nickel-iron bracket from a computer hard drive
Germanium occurs in some zinc-copper-lead ore bodies, in quantities sufficient to justify extraction. The pure form costs $360 per 100 grams, as at February 2022.
A pile of compacted steel scraps, ready for recycling
The Alchemist Discovering Phosphorus (1771) by Joseph Wright. The alchemist is Hennig Brand; the glow emanates from the combustion of phosphorus inside the flask.
The Artemision Bronze showing either Poseidon or Zeus, c. 460 BCE, National Archaeological Museum, Athens. The figure is more than 2 m in height.
De re metallica, 1555
Platinum crystals
A disc of highly enriched uranium that was recovered from scrap processed at the Y-12 National Security Complex, in Oak Ridge, Tennessee
Ultrapure cerium under argon, 1.5 gm
White-hot steel pours like water from a 35-ton electric furnace, at the Allegheny Ludlum Steel Corporation, in Brackenridge, Pennsylvania.
A Ho-Mg-Zn icosahedral quasicrystal formed as a pentagonal dodecahedron, the dual of the icosahedron
Body-centered cubic crystal structure, with a 2-atom unit cell, as found in e.g. chromium, iron, and tungsten
Face-centered cubic crystal structure, with a 4-atom unit cell, as found in e.g. aluminum, copper, and gold
Hexagonal close-packed crystal structure, with a 6-atom unit cell, as found in e.g. titanium, cobalt, and zinc
Niobium crystals and a 1 cm{{sup|3}} anodized niobium cube for comparison
Molybdenum crystals and a 1 cm{{sup|3}} molybdenum cube for comparison
Tantalum single crystal, some crystalline fragments, and a 1 cm{{sup|3}} tantalum cube for comparison
Tungsten rods with evaporated crystals, partially oxidized with colorful tarnish, and a 1 cm{{sup|3}} tungsten cube for comparison
Rhenium, including a 1 cm{{sup|3}} cube
Native copper
Gold crystals
Crystalline silver
A slice of meteoric iron
alt=Three, dark broccoli shaped clumps of oxidised lead with grossly distended buds, and a cube of lead which has a dull silvery appearance.| oxidised lead
A brass weight (35 g)
A droplet of solidified molten tin
alt=A silvery molasses-like liquid being poured into a circular container with a height equivalent to a smaller coin on its edge| Mercury being
Electrum, a natural alloy of silver and gold, was often used for making coins. Shown is the Roman god Apollo, and on the obverse, a Delphi tripod (circa 310–305 BCE).
A plate made of pewter, an alloy of 85–99% tin and (usually) copper. Pewter was first used around the beginning of the Bronze Age in the Near East.
A pectoral (ornamental breastplate) made of tumbaga, an alloy of gold and copper
Arsenic, sealed in a container to prevent tarnishing
Zinc fragments and a 1 cm{{sup|3}} cube
Antimony, showing its brilliant lustre
Bismuth in crystalline form, with a very thin oxidation layer, and a 1 cm{{sup|3}} bismuth cube
Sodium
Potassium pearls under paraffin oil. Size of the largest pearl is 0.5 cm.
Strontium crystals
Aluminum chunk, 2.6 grams, {{nowrap|1=1 x 2 cm}}
A bar of titanium crystals
Scandium, including a 1 cm{{sup|3}} cube
Lutetium, including a 1 cm{{sup|3}} cube
Hafnium, in the form of a 1.7 kg bar

A metal may be a chemical element such as iron; an alloy such as stainless steel; or a molecular compound such as polymeric sulfur nitride.

- Metal

The number is inexact as the boundaries between metals, nonmetals, and metalloids fluctuate slightly due to a lack of universally accepted definitions of the categories involved.

- Metal

In chemistry, a nonmetal is a chemical element that generally lacks a predominance of metallic properties; they range from colorless gases (like hydrogen) to shiny and high melting point solids (like boron).

- Nonmetal

A first distinction is between metals, which readily conduct electricity, nonmetals, which do not, and a small group, (the metalloids), having intermediate properties and often behaving as semiconductors.

- Chemical element
Iron, shown here as fragments and a 1 cm3 cube, is an example of a chemical element that is a metal.

7 related topics with Alpha

Overall

435x435px

Periodic table

3 links

435x435px
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
Idealized order of shell-filling (most accurate for n  ≲ 4.)
Trend in atomic radii
Graph of first ionisation energies of the elements in electronvolts (predictions used for elements 105–118)
Trend in electron affinities
Flowing liquid mercury. Its liquid state at room temperature is a result of special relativity.
A periodic table colour-coded to show some commonly used sets of similar elements. The categories and their boundaries differ somewhat between sources. Alkali metals
 Alkaline earth metals
 Lanthanides
 Actinides
 Transition metals Other metals
 Metalloids
 Other nonmetals
 Halogens
 Noble gases
Mendeleev's 1869 periodic table
Mendeleev's 1871 periodic table
Dmitri Mendeleev
Henry Moseley
Periodic table of van den Broek
Glenn T. Seaborg
One possible form of the extended periodic table to element 172, suggested by Finnish chemist Pekka Pyykkö. Deviations from the Madelung order (8s < < 6f < 7d < 8p) begin to appear at elements 139 and 140, though for the most part it continues to hold approximately.
Otto Theodor Benfey's spiral periodic table (1964)
Iron, a metal
Sulfur, a nonmetal
Arsenic, an element often called a semi-metal or metalloid

The periodic table, also known as the periodic table of the (chemical) elements, is a tabular display of the chemical elements.

Trends run through the periodic table, with nonmetallic character (keeping their own electrons) increasing from left to right across a period, and from down to up across a group, and metallic character (surrendering electrons to other atoms) increasing in the opposite direction.

Joseph Priestley is usually given priority in the discovery.

Oxygen

3 links

Joseph Priestley is usually given priority in the discovery.
Antoine Lavoisier discredited the phlogiston theory.
Robert H. Goddard and a liquid oxygen-gasoline rocket
An experiment setup for preparation of oxygen in academic laboratories
Orbital diagram, after Barrett (2002), showing the participating atomic orbitals from each oxygen atom, the molecular orbitals that result from their overlap, and the aufbau filling of the orbitals with the 12 electrons, 6 from each O atom, beginning from the lowest-energy orbitals, and resulting in covalent double-bond character from filled orbitals (and cancellation of the contributions of the pairs of σ and σ* and π and π* orbital pairs).
Liquid oxygen, temporarily suspended in a magnet owing to its paramagnetism
Space-filling model representation of dioxygen (O2) molecule
Oxygen discharge (spectrum) tube
Late in a massive star's life, 16O concentrates in the O-shell, 17O in the H-shell and 18O in the He-shell.
Cold water holds more dissolved.
500 million years of climate change vs. 18O
Photosynthesis splits water to liberate and fixes into sugar in what is called a Calvin cycle.
build-up in Earth's atmosphere: 1) no produced; 2) produced, but absorbed in oceans & seabed rock; 3)  starts to gas out of the oceans, but is absorbed by land surfaces and formation of ozone layer; 4–5)  sinks filled and the gas accumulates
Hofmann electrolysis apparatus used in electrolysis of water.
Oxygen and MAPP gas compressed-gas cylinders with regulators
An oxygen concentrator in an emphysema patient's house
Low pressure pure is used in space suits.
Most commercially produced is used to smelt and/or decarburize iron.
Water is the most familiar oxygen compound.
Oxides, such as iron oxide or rust, form when oxygen combines with other elements.
Main symptoms of oxygen toxicity
The interior of the Apollo 1 Command Module. Pure at higher than normal pressure and a spark led to a fire and the loss of the Apollo 1 crew.

Oxygen is the chemical element with the symbol O and atomic number 8.

It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds.

Common uses of oxygen include production of steel, plastics and textiles, brazing, welding and cutting of steels and other metals, rocket propellant, oxygen therapy, and life support systems in aircraft, submarines, spaceflight and diving.

Copper-germanium alloy pellets, likely ~84% Cu; 16% Ge. When combined with silver the result is a tarnish resistant sterling silver. Also shown are two silver pellets.

Metalloid

3 links

Copper-germanium alloy pellets, likely ~84% Cu; 16% Ge. When combined with silver the result is a tarnish resistant sterling silver. Also shown are two silver pellets.
Arsenic trioxide or white arsenic, one of the most toxic and prevalent forms of arsenic. The antileukaemic properties of white arsenic were first reported in 1878.
Optical fibers, usually made of pure silicon dioxide glass, with additives such as boron trioxide or germanium dioxide for increased sensitivity
Archaic blue light signal, fuelled by a mixture of sodium nitrate, sulfur, and (red) arsenic trisulfide
Semiconductor-based electronic components. From left to right: a transistor, an integrated circuit, and an LED. The elements commonly recognised as metalloids find widespread use in such devices, as elemental or compound semiconductor constituents (Si, Ge or GaAs, for example) or as doping agents (B, Sb, Te, for example).
Boron, shown here in the form of its β-rhombohedral phase (its most thermodynamically stable allotrope)
Silicon has a blue-grey metallic lustre.
Germanium is sometimes described as a metal
Arsenic, sealed in a container to prevent tarnishing
Antimony, showing its brilliant lustre
Tellurium, described by Dmitri Mendeleev as forming a transition between metals and nonmetals
Carbon (as graphite). Delocalized valence electrons within the layers of graphite give it a metallic appearance.
High purity aluminium is much softer than its familiar alloys. People who handle it for the first time often ask if it is the real thing.
Grey selenium, being a photoconductor, conducts electricity around 1,000 times better when light falls on it, a property used since the mid-1870s in various light-sensing applications
Iodine crystals, showing a metallic lustre. Iodine is a semiconductor in the direction of its planes, with a band gap of ~1.3 eV. It has an electrical conductivity of 1.7 × 10−8 S•cm−1 at room temperature. This is higher than selenium but lower than boron, the least electrically conducting of the recognised metalloids.
White tin (left) and grey tin (right). Both forms have a metallic appearance.

A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals.

The Space Shuttle Main Engine burnt hydrogen with oxygen, producing a nearly invisible flame at full thrust.

Hydrogen

3 links

The Space Shuttle Main Engine burnt hydrogen with oxygen, producing a nearly invisible flame at full thrust.
Depiction of a hydrogen atom with size of central proton shown, and the atomic diameter shown as about twice the Bohr model radius (image not to scale)
Hydrogen gas is colorless and transparent, here contained in a glass ampoule.
Phase diagram of hydrogen. The temperature and pressure scales are logarithmic, so one unit corresponds to a 10x change. The left edge corresponds to 105 Pa, which is about atmospheric pressure.
A sample of sodium hydride
Hydrogen discharge (spectrum) tube
Deuterium discharge (spectrum) tube
Antoine-Laurent de Lavoisier
Hydrogen emission spectrum lines in the visible range. These are the four visible lines of the Balmer series
NGC 604, a giant region of ionized hydrogen in the Triangulum Galaxy
300x300px
300x300px
360x360px

Hydrogen is the chemical element with the symbol H and atomic number 1.

Hydrogen is nonmetallic, except at extremely high pressures, and readily forms a single covalent bond with most nonmetallic elements, forming compounds such as water and nearly all organic compounds.

Hydrogen also forms compounds with less electronegative elements, such as metals and metalloids, where it takes on a partial negative charge.

Theoretically predicted phase diagram of carbon, from 1989. Newer work indicates that the melting point of diamond (top-right curve) does not go above about 9000 K.

Carbon

2 links

Theoretically predicted phase diagram of carbon, from 1989. Newer work indicates that the melting point of diamond (top-right curve) does not go above about 9000 K.
A large sample of glassy carbon
Some allotropes of carbon: a) diamond; b) graphite; c) lonsdaleite; d–f) fullerenes (C60, C540, C70); g) amorphous carbon; h) carbon nanotube
Comet C/2014 Q2 (Lovejoy) surrounded by glowing carbon vapor
Graphite ore, shown with a penny for scale
Raw diamond crystal
"Present day" (1990s) sea surface dissolved inorganic carbon concentration (from the GLODAP climatology)
Diagram of the carbon cycle. The black numbers indicate how much carbon is stored in various reservoirs, in billions tonnes ("GtC" stands for gigatonnes of carbon; figures are circa 2004). The purple numbers indicate how much carbon moves between reservoirs each year. The sediments, as defined in this diagram, do not include the ≈70 million GtC of carbonate rock and kerogen.
Structural formula of methane, the simplest possible organic compound.
Correlation between the carbon cycle and formation of organic compounds. In plants, carbon dioxide formed by carbon fixation can join with water in photosynthesis ( green ) to form organic compounds, which can be used and further converted by both plants and animals.
This anthracene derivative contains a carbon atom with 5 formal electron pairs around it.
Antoine Lavoisier in his youth
Carl Wilhelm Scheele
Diamond output in 2005
Pencil leads for mechanical pencils are made of graphite (often mixed with a clay or synthetic binder).
Sticks of vine and compressed charcoal
A cloth of woven carbon fibres
Silicon carbide single crystal
The C60 fullerene in crystalline form
Tungsten carbide endmills
Worker at carbon black plant in Sunray, Texas (photo by John Vachon, 1942)

Carbon (from carbo "coal") is a chemical element with the symbol C and atomic number 6.

It is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds.

This results in a lower bulk electrical conductivity for carbon than for most metals.

Sphalerite (ZnS)

Zinc

2 links

Sphalerite (ZnS)
Zinc acetate
Zinc chloride
Late Roman brass bucket – the Hemmoorer Eimer from Warstade, Germany, second to third century AD
Various alchemical symbols for the element zinc
Andreas Sigismund Marggraf is given credit for first isolating pure zinc
Galvanization was named after Luigi Galvani.
Percentage of zinc output in 2006 by countries
World production trend
Zinc Mine Rosh Pinah, Namibia
Zinc Mine Skorpion, Namibia
Hot-dip handrail galvanized crystalline surface
Cast brass microstructure at magnification 400x
Zinc oxide is used as a white pigment in paints.
Addition of diphenylzinc to an aldehyde
GNC zinc 50 mg tablets. The amount exceeds what is deemed the safe upper limit in the United States (40 mg) and European Union (25 mg)
Zinc gluconate is one compound used for the delivery of zinc as a dietary supplement.
Ribbon diagram of human carbonic anhydrase II, with zinc atom visible in the center
Zinc fingers help read DNA sequences.
Foods and spices containing zinc

Zinc is a chemical element with the symbol Zn and atomic number 30.

Zinc metal was not produced on a large scale until the 12th century in India, though it was known to the ancient Romans and Greeks.

Binary compounds of zinc are known for most of the metalloids and all the nonmetals except the noble gases.

As a solid, sulfur is a characteristic lemon yellow; when burned, sulfur melts into a blood-red liquid and emits a blue flame.

Sulfur

0 links

As a solid, sulfur is a characteristic lemon yellow; when burned, sulfur melts into a blood-red liquid and emits a blue flame.
Sulfur vat from which railroad cars are loaded, Freeport Sulphur Co., Hoskins Mound, Texas (1943)
Most of the yellow and orange hues of Io are due to elemental sulfur and sulfur compounds deposited by active volcanoes.
Sulfur extraction, East Java
A man carrying sulfur blocks from Kawah Ijen, a volcano in East Java, Indonesia, 2009
The structure of the cyclooctasulfur molecule, S8
Lapis lazuli owes its blue color to a trisulfur radical anion
Two parallel sulfur chains grown inside a single-wall carbon nanotube (CNT, a). Zig-zag (b) and straight (c) S chains inside double-wall CNTs
Pharmaceutical container for sulfur from the first half of the 20th century. From the Museo del Objeto del Objeto collection
Traditional sulfur mining at Ijen Volcano, East Java, Indonesia. This image shows the dangerous and rugged conditions the miners face, including toxic smoke and high drops, as well as their lack of protective equipment. The pipes over which they are standing are for condensing sulfur vapors.
Sulfur recovered from hydrocarbons in Alberta, stockpiled for shipment in North Vancouver, British Columbia
Production and price (US market) of elemental sulfur
Sulfuric acid production in 2000
Sulfur candle originally sold for home fumigation
Schematic representation of disulfide bridges between two protein helices
Effect of acid rain on a forest, Jizera Mountains, Czech Republic
Allicin, a chemical compound in garlic
(R)-cysteine, an amino acid containing a thiol group
Methionine, an amino acid containing a thioether
Diphenyl disulfide, a representative disulfide
Perfluorooctanesulfonic acid, a surfactant
Dibenzothiophene, a component of crude oil
Penicillin, an antibiotic where "R" is the variable group

Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16.

It is abundant, multivalent and nonmetallic.

Heating this compound gives polymeric sulfur nitride, which has metallic properties even though it does not contain any metal atoms.