The chemical elements ordered in the periodic table
A diagram representing at the microscopic level the differences between homogeneous mixtures, heterogeneous mixtures, compounds, and elements
Estimated distribution of dark matter and dark energy in the universe. Only the fraction of the mass and energy in the universe labeled "atoms" is composed of chemical elements.
Periodic table showing the cosmogenic origin of each element in the Big Bang, or in large or small stars. Small stars can produce certain elements up to sulfur, by the alpha process. Supernovae are needed to produce "heavy" elements (those beyond iron and nickel) rapidly by neutron buildup, in the r-process. Certain large stars slowly produce other elements heavier than iron, in the s-process; these may then be blown into space in the off-gassing of planetary nebulae
Abundances of the chemical elements in the Solar System. Hydrogen and helium are most common, from the Big Bang. The next three elements (Li, Be, B) are rare because they are poorly synthesized in the Big Bang and also in stars. The two general trends in the remaining stellar-produced elements are: (1) an alternation of abundance in elements as they have even or odd atomic numbers (the Oddo-Harkins rule), and (2) a general decrease in abundance as elements become heavier. Iron is especially common because it represents the minimum energy nuclide that can be made by fusion of helium in supernovae.
Mendeleev's 1869 periodic table: An experiment on a system of elements. Based on their atomic weights and chemical similarities.
Dmitri Mendeleev
Henry Moseley

Mixtures are one product of mechanically blending or mixing chemical substances such as elements and compounds, without chemical bonding or other chemical change, so that each ingredient substance retains its own chemical properties and makeup.

- Mixture

Nearly all other naturally occurring elements occur in the Earth as compounds or mixtures.

- Chemical element
The chemical elements ordered in the periodic table

1 related topic

Alpha

Steam and liquid water are two different forms of the same chemical (pure) substance: water.

Chemical substance

Form of matter having constant chemical composition and characteristic properties.

Form of matter having constant chemical composition and characteristic properties.

Steam and liquid water are two different forms of the same chemical (pure) substance: water.
Colors of a single chemical (Nile red) in different solvents, under visible and UV light, showing how the chemical interacts dynamically with its solvent environment.
Native sulfur crystals. Sulfur occurs naturally as elemental sulfur, in sulfide and sulfate minerals and in hydrogen sulfide.
Potassium ferricyanide is a compound of potassium, iron, carbon and nitrogen; although it contains cyanide anions, it does not release them and is nontoxic.
Cranberry glass, while appearing homogeneous, is a mixture consisting of glass and gold colloidal particles of about 40nm in diameter, giving it a red color.
Chemicals in graduated cylinders and beaker.

Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., without breaking chemical bonds.

Chemical substances are often called 'pure' to set them apart from mixtures.