A report on Cofactor (biochemistry)

The succinate dehydrogenase complex showing several cofactors, including flavin, iron–sulfur centers, and heme.
A simple [Fe2S2] cluster containing two iron atoms and two sulfur atoms, coordinated by four protein cysteine residues.
The redox reactions of nicotinamide adenine dinucleotide.

Non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst .

- Cofactor (biochemistry)
The succinate dehydrogenase complex showing several cofactors, including flavin, iron–sulfur centers, and heme.

45 related topics with Alpha

Overall

The redox reactions of nicotinamide adenine dinucleotide.

Nicotinamide adenine dinucleotide

8 links

The redox reactions of nicotinamide adenine dinucleotide.
UV absorption spectra of NAD and NADH.
Some metabolic pathways that synthesize and consume NAD in vertebrates. The abbreviations are defined in the text.
Salvage pathways use three precursors for NAD+.
Rossmann fold in part of the lactate dehydrogenase of Cryptosporidium parvum, showing NAD in red, beta sheets in yellow, and alpha helices in purple.
In this diagram, the hydride acceptor C4 carbon is shown at the top. When the nicotinamide ring lies in the plane of the page with the carboxy-amide to the right, as shown, the hydride donor lies either "above" or "below" the plane of the page. If "above" hydride transfer is class A, if "below" hydride transfer is class B.
A simplified outline of redox metabolism, showing how NAD and NADH link the citric acid cycle and oxidative phosphorylation.
The structure of cyclic ADP-ribose.
Arthur Harden, co-discoverer of NAD

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism.

A bottle of B-complex vitamin pills

Vitamin

7 links

Organic molecule that is an essential micronutrient that an organism needs in small quantities for the proper functioning of its metabolism.

Organic molecule that is an essential micronutrient that an organism needs in small quantities for the proper functioning of its metabolism.

A bottle of B-complex vitamin pills
Calcium combined with vitamin D (as calciferol) supplement tablets with fillers.
Jack Drummond's single-paragraph article in 1920 which provided structure and nomenclature used today for vitamins

The B complex vitamins function as enzyme cofactors (coenzymes) or the precursors for them.

The enzyme glucosidase converts the sugar maltose into two glucose sugars. Active site residues in red, maltose substrate in black, and NAD cofactor in yellow.

Enzyme

7 links

Enzymes are proteins that act as biological catalysts (biocatalysts).

Enzymes are proteins that act as biological catalysts (biocatalysts).

The enzyme glucosidase converts the sugar maltose into two glucose sugars. Active site residues in red, maltose substrate in black, and NAD cofactor in yellow.
Eduard Buchner
Enzyme activity initially increases with temperature (Q10 coefficient) until the enzyme's structure unfolds (denaturation), leading to an optimal rate of reaction at an intermediate temperature.
Organisation of enzyme structure and lysozyme example. Binding sites in blue, catalytic site in red and peptidoglycan substrate in black.
Enzyme changes shape by induced fit upon substrate binding to form enzyme-substrate complex. Hexokinase has a large induced fit motion that closes over the substrates adenosine triphosphate and xylose. Binding sites in blue, substrates in black and Mg2+ cofactor in yellow.
Chemical structure for thiamine pyrophosphate and protein structure of transketolase. Thiamine pyrophosphate cofactor in yellow and xylulose 5-phosphate substrate in black.
The energies of the stages of a chemical reaction. Uncatalysed (dashed line), substrates need a lot of activation energy to reach a transition state, which then decays into lower-energy products. When enzyme catalysed (solid line), the enzyme binds the substrates (ES), then stabilizes the transition state (ES‡) to reduce the activation energy required to produce products (EP) which are finally released.
The metabolic pathway of glycolysis releases energy by converting glucose to pyruvate via a series of intermediate metabolites. Each chemical modification (red box) is performed by a different enzyme.
In phenylalanine hydroxylase over 300 different mutations throughout the structure cause phenylketonuria. Phenylalanine substrate and tetrahydrobiopterin coenzyme in black, and Fe2+ cofactor in yellow.
Hereditary defects in enzymes are generally inherited in an autosomal fashion because there are more non-X chromosomes than X-chromosomes, and a recessive fashion because the enzymes from the unaffected genes are generally sufficient to prevent symptoms in carriers.

In some enzymes, no amino acids are directly involved in catalysis; instead, the enzyme contains sites to bind and orient catalytic cofactors.

Simplified view of the cellular metabolism

Metabolism

10 links

Set of life-sustaining chemical reactions in organisms.

Set of life-sustaining chemical reactions in organisms.

Simplified view of the cellular metabolism
Structure of adenosine triphosphate (ATP), a central intermediate in energy metabolism
Structure of a triacylglycerol lipid
This is a diagram depicting a large set of human metabolic pathways.
Glucose can exist in both a straight-chain and ring form.
Structure of the coenzyme acetyl-CoA.The transferable acetyl group is bonded to the sulfur atom at the extreme left.
The structure of iron-containing hemoglobin. The protein subunits are in red and blue, and the iron-containing heme groups in green. From.
A simplified outline of the catabolism of proteins, carbohydrates and fats
Mechanism of ATP synthase. ATP is shown in red, ADP and phosphate in pink and the rotating stalk subunit in black.
Plant cells (bounded by purple walls) filled with chloroplasts (green), which are the site of photosynthesis
Simplified version of the steroid synthesis pathway with the intermediates isopentenyl pyrophosphate (IPP), dimethylallyl pyrophosphate (DMAPP), geranyl pyrophosphate (GPP) and squalene shown. Some intermediates are omitted for clarity.
Effect of insulin on glucose uptake and metabolism. Insulin binds to its receptor (1), which in turn starts many protein activation cascades (2). These include: translocation of Glut-4 transporter to the plasma membrane and influx of glucose (3), glycogen synthesis (4), glycolysis (5) and fatty acid synthesis (6).
Evolutionary tree showing the common ancestry of organisms from all three domains of life. Bacteria are colored blue, eukaryotes red, and archaea green. Relative positions of some of the phyla included are shown around the tree.
Metabolic network of the Arabidopsis thaliana citric acid cycle. Enzymes and metabolites are shown as red squares and the interactions between them as black lines.
Aristotle's metabolism as an open flow model
Santorio Santorio in his steelyard balance, from Ars de statica medicina, first published 1614

These group-transfer intermediates are called coenzymes.

A representation of the 3D structure of the protein myoglobin showing turquoise α-helices. This protein was the first to have its structure solved by X-ray crystallography. Toward the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).

Protein

5 links

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues.

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues.

A representation of the 3D structure of the protein myoglobin showing turquoise α-helices. This protein was the first to have its structure solved by X-ray crystallography. Toward the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).
John Kendrew with model of myoglobin in progress
Chemical structure of the peptide bond (bottom) and the three-dimensional structure of a peptide bond between an alanine and an adjacent amino acid (top/inset). The bond itself is made of the CHON elements.
Resonance structures of the peptide bond that links individual amino acids to form a protein polymer
A ribosome produces a protein using mRNA as template
The DNA sequence of a gene encodes the amino acid sequence of a protein
The crystal structure of the chaperonin, a huge protein complex. A single protein subunit is highlighted. Chaperonins assist protein folding.
Three possible representations of the three-dimensional structure of the protein triose phosphate isomerase. Left: All-atom representation colored by atom type. Middle: Simplified representation illustrating the backbone conformation, colored by secondary structure. Right: Solvent-accessible surface representation colored by residue type (acidic residues red, basic residues blue, polar residues green, nonpolar residues white).
Molecular surface of several proteins showing their comparative sizes. From left to right are: immunoglobulin G (IgG, an antibody), hemoglobin, insulin (a hormone), adenylate kinase (an enzyme), and glutamine synthetase (an enzyme).
The enzyme hexokinase is shown as a conventional ball-and-stick molecular model. To scale in the top right-hand corner are two of its substrates, ATP and glucose.
Ribbon diagram of a mouse antibody against cholera that binds a carbohydrate antigen
Proteins in different cellular compartments and structures tagged with green fluorescent protein (here, white)
Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein structure, in this case hemoglobin containing heme units

Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors.

Summary of aerobic respiration

Glycolysis

4 links

Metabolic pathway that converts glucose , into pyruvic acid (CH3COCO2H).

Metabolic pathway that converts glucose , into pyruvic acid (CH3COCO2H).

Summary of aerobic respiration
Summary of the 10 reactions of the glycolysis pathway
Glycolysis pathway overview.
Eduard Buchner. Discovered cell-free fermentation.
Otto Meyerhof. One of the main scientists involved in completing the puzzle of glycolysis
Yeast hexokinase B
Bacillus stearothermophilus phosphofructokinase
Yeast pyruvate kinase

Arthur Harden and William Young along with Nick Sheppard determined, in a second experiment, that a heat-sensitive high-molecular-weight subcellular fraction (the enzymes) and a heat-insensitive low-molecular-weight cytoplasm fraction (ADP, ATP and NAD+ and other cofactors) are required together for fermentation to proceed.

The "ylide form" of TPP.

Thiamine pyrophosphate

4 links

Thiamine (vitamin B1) derivative which is produced by the enzyme thiamine diphosphokinase.

Thiamine (vitamin B1) derivative which is produced by the enzyme thiamine diphosphokinase.

The "ylide form" of TPP.
TPP Mechanism
The TPP thiazolium ring can be deprotonated at C2 to become an ylid.
A full view of TPP. The arrow indicates the acidic proton.

Thiamine pyrophosphate is a cofactor that is present in all living systems, in which it catalyzes several biochemical reactions.

Interactive animation of the structure of ATP

Adenosine triphosphate

4 links

Organic compound and hydrotrope that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis.

Organic compound and hydrotrope that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis.

Interactive animation of the structure of ATP
The cycles of synthesis and degradation of ATP; 2 and 1 represent input and output of energy, respectively.
This image shows a 360-degree rotation of a single, gas-phase magnesium-ATP chelate with a charge of −2. The anion was optimized at the UB3LYP/6-311++G(d,p) theoretical level and the atomic connectivity modified by the human optimizer to reflect the probable electronic structure.
An example of the Rossmann fold, a structural domain of a decarboxylase enzyme from the bacterium Staphylococcus epidermidis with a bound flavin mononucleotide cofactor.

It is also a precursor to DNA and RNA, and is used as a coenzyme.

Nutrient

5 links

Substance used by an organism to survive, grow, and reproduce.

Substance used by an organism to survive, grow, and reproduce.

Vitamins are organic compounds essential to the body. They usually act as coenzymes or cofactors for various proteins in the body.

Reaction of FAD to form FADH2

Flavin adenine dinucleotide

3 links

Reaction of FAD to form FADH2
Approximate absorption spectrum for FAD
Mechanism 1. Hydride transfer occurs by addition of H+ and 2 e−
Mechanism 2. Hydride transfer by abstraction of hydride from NADH
Mechanism 3. Radical formation by electron abstraction
Mechanism 4. The loss of hydride to electron deficient R group
Mechanism 5. Use of nucleophilic addition to break R1-R2 bond
Mechanism 6. Carbon radical reacts with O2 and acid to form H2O2
Riboflavin
FADH{{sub|2}}

In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism.