Alternating electric current flows through the solenoid on the left, producing a changing magnetic field. This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right.
Lenz's law tells the direction of a current in a conductor loop induced indirectly by the change in magnetic flux through the loop. Scenarios a, b, c, d and e are possible. Scenario f is impossible due to the law of conservation of energy. The charges (electrons) in the conductor are not pushed in motion directly by the change in flux, but by a circular electric field (not pictured) surrounding the total magnetic field of inducing and induced magnetic fields. This total magnetic field induces the electric field.
Faraday's experiment showing induction between coils of wire: The liquid battery (right) provides a current which flows through the small coil (A), creating a magnetic field. When the coils are stationary, no current is induced. But when the small coil is moved in or out of the large coil (B), the magnetic flux through the large coil changes, inducing a current which is detected by the galvanometer (G).
Faraday's experiment showing induction between coils of wire: The liquid battery (right) provides a current that flows through the small coil (A), creating a magnetic field. When the coils are stationary, no current is induced. But when the small coil is moved in or out of the large coil (B), the magnetic flux through the large coil changes, inducing a current which is detected by the galvanometer (G).
A diagram of Faraday's iron ring apparatus. The changing magnetic flux of the left coil induces a current in the right coil.
A diagram of Faraday's iron ring apparatus. Change in the magnetic flux of the left coil induces a current in the right coil.
Faraday's disk, the first electric generator, a type of homopolar generator.
A solenoid
Alternating electric current flows through the solenoid on the left, producing a changing magnetic field. This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right.
The longitudinal cross section of a solenoid with a constant electrical current running through it. The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it.
Faraday's homopolar generator. The disc rotates with angular rate {{mvar|ω}}, sweeping the conducting radius circularly in the static magnetic field {{math|B}} (which direction is along the disk surface normal). The magnetic Lorentz force {{math|v × B}} drives a current along the conducting radius to the conducting rim, and from there the circuit completes through the lower brush and the axle supporting the disc. This device generates an emf and a current, although the shape of the "circuit" is constant and thus the flux through the circuit does not change with time.
Rectangular wire loop rotating at angular velocity ω in radially outward pointing magnetic field B of fixed magnitude. The circuit is completed by brushes making sliding contact with top and bottom discs, which have conducting rims. This is a simplified version of the drum generator.
A wire (solid red lines) connects to two touching metal plates (silver) to form a circuit. The whole system sits in a uniform magnetic field, normal to the page. If the abstract path {{math|∂Σ}} follows the primary path of current flow (marked in red), then the magnetic flux through this path changes dramatically as the plates are rotated, yet the emf is almost zero. After Feynman Lectures on Physics {{Rp|ch17}}
A current clamp

Lenz's law, named after the physicist Emil Lenz (pronounced ) who formulated it in 1834, says that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field.

- Lenz's law

Faraday's law of induction (briefly, Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic induction.

- Faraday's law of induction

Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction.

- Electromagnetic induction

Lenz's law describes the direction of the induced field.

- Electromagnetic induction

Lenz's law is contained in the rigorous treatment of Faraday's law of induction (the magnitude of EMF induced in a coil is proportional to the rate of change of the magnetic field), where it finds expression by the negative sign:

- Lenz's law

Lenz's law, formulated by Emil Lenz in 1834, describes "flux through the circuit", and gives the direction of the induced emf and current resulting from electromagnetic induction (elaborated upon in the examples below).

- Faraday's law of induction
Alternating electric current flows through the solenoid on the left, producing a changing magnetic field. This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right.

0 related topics with Alpha

Overall