400x400px
The electromagnetic spectrum
A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated.
Shows the relative wavelengths of the electromagnetic waves of three different colours of light (blue, green, and red) with a distance scale in micrometers along the x-axis.
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths
The electromagnetic spectrum, with the visible portion highlighted
In electromagnetic radiation (such as microwaves from an antenna, shown here) the term "radiation" applies only to the parts of the electromagnetic field that radiate into infinite space and decrease in intensity by an inverse-square law of power, so that the total radiation energy that crosses through an imaginary spherical surface is the same, no matter how far away from the antenna the spherical surface is drawn. Electromagnetic radiation thus includes the far field part of the electromagnetic field around a transmitter. A part of the "near-field" close to the transmitter, forms part of the changing electromagnetic field, but does not count as electromagnetic radiation.
Plot of Earth's atmospheric opacity to various wavelengths of electromagnetic radiation. This is the surface-to-space opacity, the atmosphere is transparent to longwave radio transmissions within the troposphere but opaque to space due to the ionosphere.
800px
Electromagnetic waves can be imagined as a self-propagating transverse oscillating wave of electric and magnetic fields. This 3D animation shows a plane linearly polarized wave propagating from left to right. The electric and magnetic fields in such a wave are in-phase with each other, reaching minima and maxima together.
Plot of atmospheric opacity for terrestrial to terrestrial transmission showing the molecules responsible for some of the resonances
Beam of sun light inside the cavity of Rocca ill'Abissu at Fondachelli-Fantina, Sicily
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation.
The amount of penetration of UV relative to altitude in Earth's ozone
Due to refraction, the straw dipped in water appears bent and the ruler scale compressed when viewed from a shallow angle.
James Clerk Maxwell
Hong Kong illuminated by colourful artificial lighting.
Electromagnetic spectrum with visible light highlighted
Pierre Gassendi.
Rough plot of Earth's atmospheric absorption and scattering (or opacity) of various wavelengths of electromagnetic radiation
Christiaan Huygens.
Thomas Young's sketch of a double-slit experiment showing diffraction. Young's experiments supported the theory that light consists of waves.
400x400px

The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies.

- Electromagnetic spectrum

Light or visible light is electromagnetic radiation within the portion of the electromagnetic spectrum that is perceived by the human eye.

- Light

It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

- Electromagnetic radiation

All of these waves form part of the electromagnetic spectrum.

- Electromagnetic radiation

This frequency range is divided into separate bands, and the electromagnetic waves within each frequency band are called by different names; beginning at the low frequency (long wavelength) end of the spectrum these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays at the high-frequency (short wavelength) end.

- Electromagnetic spectrum
400x400px

6 related topics with Alpha

Overall

A pseudocolor image of two people taken in long-wavelength infrared (body-temperature thermal) radiation.

Infrared

2 links

A pseudocolor image of two people taken in long-wavelength infrared (body-temperature thermal) radiation.
This false-color infrared space telescope image has blue, green and red corresponding to 3.4, 4.6, and 12 μm wavelengths, respectively.
Plot of atmospheric transmittance in part of the infrared region
Materials with higher emissivity appear closer to their true temperature than materials that reflect more of their different-temperature surroundings. In this thermal image, the more reflective ceramic cylinder, reflecting the cooler surroundings, appears to be colder than its cubic container (made of more emissive silicon carbide), while in fact, they have the same temperature.
Active-infrared night vision: the camera illuminates the scene at infrared wavelengths invisible to the human eye. Despite a dark back-lit scene, active-infrared night vision delivers identifying details, as seen on the display monitor.
Thermography helped to determine the temperature profile of the Space Shuttle thermal protection system during re-entry.
Hyperspectral thermal infrared emission measurement, an outdoor scan in winter conditions, ambient temperature −15 °C, image produced with a Specim LWIR hyperspectral imager. Relative radiance spectra from various targets in the image are shown with arrows. The infrared spectra of the different objects such as the watch clasp have clearly distinctive characteristics. The contrast level indicates the temperature of the object.
Infrared light from the LED of a remote control as recorded by a digital camera
Reflected light photograph in various infrared spectra to illustrate the appearance as the wavelength of light changes.
Infrared hair dryer for hair salons, c. 2010s
IR satellite picture of cumulonimbus clouds over the Great Plains of the United States.
The greenhouse effect with molecules of methane, water, and carbon dioxide re-radiating solar heat
Beta Pictoris with its planet Beta Pictoris b, the light-blue dot off-center, as seen in infrared. It combines two images, the inner disc is at 3.6 μm.
An infrared reflectogram of Mona Lisa by Leonardo da Vinci
frameless
Thermographic image of a snake eating a mouse
Infrared radiation was discovered in 1800 by William Herschel.
Infrared hair dryer for hair salons, c. 2010s

Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light.

Beyond infrared is the microwave portion of the electromagnetic spectrum.

Levels of ozone at various altitudes (DU/km) and blocking of different bands of ultraviolet radiation: In essence, all UVC is blocked by diatomic oxygen (100–200 nm) or by ozone (triatomic oxygen) (200–280 nm) in the atmosphere. The ozone layer then blocks most UVB. Meanwhile, UVA is hardly affected by ozone, and most of it reaches the ground. UVA makes up almost all UV light that penetrates the Earth's atmosphere.

Ultraviolet

2 links

Levels of ozone at various altitudes (DU/km) and blocking of different bands of ultraviolet radiation: In essence, all UVC is blocked by diatomic oxygen (100–200 nm) or by ozone (triatomic oxygen) (200–280 nm) in the atmosphere. The ozone layer then blocks most UVB. Meanwhile, UVA is hardly affected by ozone, and most of it reaches the ground. UVA makes up almost all UV light that penetrates the Earth's atmosphere.
A 380 nanometer UV LED makes some common household items fluoresce.
Ultraviolet photons harm the DNA molecules of living organisms in different ways. In one common damage event, adjacent thymine bases bond with each other, instead of across the "ladder". This "thymine dimer" makes a bulge, and the distorted DNA molecule does not function properly.
Sunburn effect (as measured by the UV index) is the product of the sunlight spectrum (radiation intensity) and the erythemal action spectrum (skin sensitivity) across the range of UV wavelengths. Sunburn production per milliwatt of radiation intensity is increased by nearly a factor of 100 between the near UV‑B wavelengths of 315–295 nm
Demonstration of the effect of sunscreen. The man's face has sunscreen on his right side only. The left image is a regular photograph of his face; the right image is of reflected UV light. The side of the face with sunscreen is darker because the sunscreen absorbs the UV light.
Signs are often used to warn of the hazard of strong UV sources.
UV damaged polypropylene rope (left) and new rope (right)
IR spectrum showing carbonyl absorption due to UV degradation of polyethylene
A portrait taken using only UV light between the wavelengths of 335 and 365 nanometers.
Aurora at Jupiter's north pole as seen in ultraviolet light by the Hubble Space Telescope.
A bird appears on many Visa credit cards when they are held under a UV light source
After a training exercise involving fake body fluids, a healthcare worker's personal protective equipment is checked with ultraviolet light to find invisible drops of fluids. These fluids could contain deadly viruses or other contamination.
A collection of mineral samples brilliantly fluorescing at various wavelengths as seen while being irradiated by UV light.
Effects of UV on finished surfaces in 0, 20 and 43 hours.
A low-pressure mercury vapor discharge tube floods the inside of a hood with shortwave UV light when not in use, sterilizing microbiological contaminants from irradiated surfaces.
Entomologist using a UV light for collecting beetles in Chaco, Paraguay.

Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30 PHz) to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays.

The electromagnetic spectrum of ultraviolet radiation (UVR), defined most broadly as 10–400 nanometers, can be subdivided into a number of ranges recommended by the ISO standard ISO 21348:

White light is dispersed by a prism into the colors of the visible spectrum.

Visible spectrum

2 links

White light is dispersed by a prism into the colors of the visible spectrum.
Laser beams with visible spectrum
Newton's color circle, from Opticks of 1704, showing the colors he associated with musical notes. The spectral colors from red to violet are divided by the notes of the musical scale, starting at D. The circle completes a full octave, from D to D. Newton's circle places red, at one end of the spectrum, next to violet, at the other. This reflects the fact that non-spectral purple colors are observed when red and violet light are mixed.
Newton's observation of prismatic colors (David Brewster 1855)
How visible light interacts with objects to make them colorful
Approximation of spectral colors on a display results in somewhat distorted chromaticity
Earth's atmosphere partially or totally blocks some wavelengths of electromagnetic radiation, but in visible light it is mostly transparent

The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye.

Electromagnetic radiation in this range of wavelengths is called visible light or simply light.

The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown.

Wavelength

1 links

Spatial period of a periodic wave—the distance over which the wave's shape repeats.

Spatial period of a periodic wave—the distance over which the wave's shape repeats.

The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown.
Sinusoidal standing waves in a box that constrains the end points to be nodes will have an integer number of half wavelengths fitting in the box.
A standing wave (black) depicted as the sum of two propagating waves traveling in opposite directions (red and blue)
Wavelength is decreased in a medium with slower propagation.
Refraction: upon entering a medium where its speed is lower, the wave changes direction.
Separation of colors by a prism (click for animation)
Various local wavelengths on a crest-to-crest basis in an ocean wave approaching shore
A sinusoidal wave travelling in a nonuniform medium, with loss
A wave on a line of atoms can be interpreted according to a variety of wavelengths.
Near-periodic waves over shallow water
Wavelength of a periodic but non-sinusoidal waveform.
A propagating wave packet
Pattern of light intensity on a screen for light passing through two slits. The labels on the right refer to the difference of the path lengths from the two slits, which are idealized here as point sources.
Diffraction pattern of a double slit has a single-slit envelope.
Relationship between wavelength, angular wavelength, and other wave properties.

Examples of waves are sound waves, light, water waves and periodic electrical signals in a conductor.

A sound wave is a variation in air pressure, while in light and other electromagnetic radiation the strength of the electric and the magnetic field vary.

The name originated with the visible light spectrum but now can be applied to the entire electromagnetic spectrum as well as to a sound spectrum or vibration spectrum.

Fluorescent minerals emit visible light when exposed to ultraviolet light.

Fluorescence

1 links

Fluorescent minerals emit visible light when exposed to ultraviolet light.
Fluorescent marine organisms
Fluorescent clothes used in black light theater production, Prague
Lignum nephriticum cup made from the wood of the narra tree (Pterocarpus indicus), and a flask containing its fluorescent solution
Matlaline, the fluorescent substance in the wood of the tree Eysenhardtia polystachya
Jablonski diagram. After an electron absorbs a high-energy photon the system is excited electronically and vibrationally. The system relaxes vibrationally, and eventually fluoresces at a longer wavelength.
Fluorescent security strip in a US twenty dollar bill under UV light
Fluorescent coral
Fluorescence has multiple origins in the tree of life. This diagram displays the origins within actinopterygians (ray finned fish).
Fluorescent marine fish
Aequoria victoria, biofluorescent jellyfish known for GFP
Fluorescent polka-dot tree frog under UV-light
Fluorescing scorpion
Fluorescence of aragonite
Fluorescent paint and plastic lit by UV tubes. Paintings by Beo Beyond
Endothelial cells under the microscope with three separate channels marking specific cellular components

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation.

A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum (invisible to the human eye), while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when exposed to UV light.

Gauss's law for magnetism: magnetic field lines never begin nor end but form loops or extend to infinity as shown here with the magnetic field due to a ring of current.

Maxwell's equations

0 links

Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.

Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.

Gauss's law for magnetism: magnetic field lines never begin nor end but form loops or extend to infinity as shown here with the magnetic field due to a ring of current.
In a geomagnetic storm, a surge in the flux of charged particles temporarily alters Earth's magnetic field, which induces electric fields in Earth's atmosphere, thus causing surges in electrical power grids. (Not to scale.)
Magnetic-core memory (1954) is an application of Ampère's law. Each core stores one bit of data.
Left: A schematic view of how an assembly of microscopic dipoles produces opposite surface charges as shown at top and bottom. Right: How an assembly of microscopic current loops add together to produce a macroscopically circulating current loop. Inside the boundaries, the individual contributions tend to cancel, but at the boundaries no cancelation occurs.

Known as electromagnetic radiation, these waves occur at various wavelengths to produce a spectrum of radiation from radio waves to gamma rays.

The speed calculated for electromagnetic waves, which could be predicted from experiments on charges and currents, matches the speed of light; indeed, light is one form of electromagnetic radiation (as are X-rays, radio waves, and others).