A report on LightX-ray and Fluorescence

A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated.
Natural color x-ray photogram of a wine scene
Fluorescent minerals emit visible light when exposed to ultraviolet light.
The electromagnetic spectrum, with the visible portion highlighted
Example of a Crookes tube, a type of discharge tube that emitted X-rays
Fluorescent marine organisms
800px
Wilhelm Röntgen
Fluorescent clothes used in black light theater production, Prague
Beam of sun light inside the cavity of Rocca ill'Abissu at Fondachelli-Fantina, Sicily
Hand mit Ringen (Hand with Rings): print of Wilhelm Röntgen's first "medical" X-ray, of his wife's hand, taken on 22 December 1895 and presented to Ludwig Zehnder of the Physik Institut, University of Freiburg, on 1 January 1896
Lignum nephriticum cup made from the wood of the narra tree (Pterocarpus indicus), and a flask containing its fluorescent solution
Due to refraction, the straw dipped in water appears bent and the ruler scale compressed when viewed from a shallow angle.
Taking an X-ray image with early Crookes tube apparatus, late 1800s. The Crookes tube is visible in center. The standing man is viewing his hand with a fluoroscope screen. The seated man is taking a radiograph of his hand by placing it on a photographic plate. No precautions against radiation exposure are taken; its hazards were not known at the time.
Matlaline, the fluorescent substance in the wood of the tree Eysenhardtia polystachya
Hong Kong illuminated by colourful artificial lighting.
Surgical removal of a bullet whose location was diagnosed with X-rays (see inset) in 1897
Jablonski diagram. After an electron absorbs a high-energy photon the system is excited electronically and vibrationally. The system relaxes vibrationally, and eventually fluoresces at a longer wavelength.
Pierre Gassendi.
Images by James Green, from "Sciagraphs of British Batrachians and Reptiles" (1897), featuring (from left) Rana esculenta (now Pelophylax lessonae), Lacerta vivipara (now Zootoca vivipara), and Lacerta agilis
Fluorescent security strip in a US twenty dollar bill under UV light
Christiaan Huygens.
1896 plaque published in "Nouvelle Iconographie de la Salpetrière", a medical journal. In the left a hand deformity, in the right same hand seen using radiography. The authors named the technique Röntgen photography.
Fluorescent coral
Thomas Young's sketch of a double-slit experiment showing diffraction. Young's experiments supported the theory that light consists of waves.
A patient being examined with a thoracic fluoroscope in 1940, which displayed continuous moving images. This image was used to argue that radiation exposure during the X-ray procedure would be negligible.
Fluorescence has multiple origins in the tree of life. This diagram displays the origins within actinopterygians (ray finned fish).
400x400px
Chandra's image of the galaxy cluster Abell 2125 reveals a complex of several massive multimillion-degree-Celsius gas clouds in the process of merging.
Fluorescent marine fish
Phase-contrast X-ray image of spider
Aequoria victoria, biofluorescent jellyfish known for GFP
X-rays are part of the electromagnetic spectrum, with wavelengths shorter than UV light. Different applications use different parts of the X-ray spectrum.
Fluorescent polka-dot tree frog under UV-light
Ionizing radiation hazard symbol
Fluorescing scorpion
Attenuation length of X-rays in water showing the oxygen absorption edge at 540 eV, the energy−3 dependence of photoabsorption, as well as a leveling off at higher photon energies due to Compton scattering. The attenuation length is about four orders of magnitude longer for hard X-rays (right half) compared to soft X-rays (left half).
Fluorescence of aragonite
Spectrum of the X-rays emitted by an X-ray tube with a rhodium target, operated at 60 kV. The smooth, continuous curve is due to bremsstrahlung, and the spikes are characteristic K lines for rhodium atoms.
Fluorescent paint and plastic lit by UV tubes. Paintings by Beo Beyond
Patient undergoing an x-ray exam in a hospital radiology room.
Endothelial cells under the microscope with three separate channels marking specific cellular components
A chest radiograph of a female, demonstrating a hiatal hernia
Plain radiograph of the right knee
Head CT scan (transverse plane) slice – a modern application of medical radiography
Abdominal radiograph of a pregnant woman, a procedure that should be performed only after proper assessment of benefit versus risk
Each dot, called a reflection, in this diffraction pattern forms from the constructive interference of scattered X-rays passing through a crystal. The data can be used to determine the crystalline structure.
Using X-ray for inspection and quality control: the differences in the structures of the die and bond wires reveal the left chip to be counterfeit.
X-ray fine art photography of needlefish by Peter Dazeley

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation.

- Fluorescence

In this sense, gamma rays, X-rays, microwaves and radio waves are also light.

- Light

He based it on the electromagnetic theory of light.

- X-ray

There are conflicting accounts of his discovery because Röntgen had his lab notes burned after his death, but this is a likely reconstruction by his biographers: Röntgen was investigating cathode rays from a Crookes tube which he had wrapped in black cardboard so that the visible light from the tube would not interfere, using a fluorescent screen painted with barium platinocyanide.

- X-ray

Certain substances produce light when they are illuminated by more energetic radiation, a process known as fluorescence.

- Light

Gemstones, minerals, may have a distinctive fluorescence or may fluoresce differently under short-wave ultraviolet, long-wave ultraviolet, visible light, or X-rays.

- Fluorescence
A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated.

3 related topics with Alpha

Overall

400x400px

Electromagnetic radiation

2 links

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, propagating through space, carrying electromagnetic radiant energy.

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, propagating through space, carrying electromagnetic radiant energy.

400x400px
Shows the relative wavelengths of the electromagnetic waves of three different colours of light (blue, green, and red) with a distance scale in micrometers along the x-axis.
In electromagnetic radiation (such as microwaves from an antenna, shown here) the term "radiation" applies only to the parts of the electromagnetic field that radiate into infinite space and decrease in intensity by an inverse-square law of power, so that the total radiation energy that crosses through an imaginary spherical surface is the same, no matter how far away from the antenna the spherical surface is drawn. Electromagnetic radiation thus includes the far field part of the electromagnetic field around a transmitter. A part of the "near-field" close to the transmitter, forms part of the changing electromagnetic field, but does not count as electromagnetic radiation.
Electromagnetic waves can be imagined as a self-propagating transverse oscillating wave of electric and magnetic fields. This 3D animation shows a plane linearly polarized wave propagating from left to right. The electric and magnetic fields in such a wave are in-phase with each other, reaching minima and maxima together.
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation.
James Clerk Maxwell
Electromagnetic spectrum with visible light highlighted
Rough plot of Earth's atmospheric absorption and scattering (or opacity) of various wavelengths of electromagnetic radiation

It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

Immediate photon emission is called fluorescence, a type of photoluminescence.

Levels of ozone at various altitudes (DU/km) and blocking of different bands of ultraviolet radiation: In essence, all UVC is blocked by diatomic oxygen (100–200 nm) or by ozone (triatomic oxygen) (200–280 nm) in the atmosphere. The ozone layer then blocks most UVB. Meanwhile, UVA is hardly affected by ozone, and most of it reaches the ground. UVA makes up almost all UV light that penetrates the Earth's atmosphere.

Ultraviolet

1 links

Levels of ozone at various altitudes (DU/km) and blocking of different bands of ultraviolet radiation: In essence, all UVC is blocked by diatomic oxygen (100–200 nm) or by ozone (triatomic oxygen) (200–280 nm) in the atmosphere. The ozone layer then blocks most UVB. Meanwhile, UVA is hardly affected by ozone, and most of it reaches the ground. UVA makes up almost all UV light that penetrates the Earth's atmosphere.
A 380 nanometer UV LED makes some common household items fluoresce.
Ultraviolet photons harm the DNA molecules of living organisms in different ways. In one common damage event, adjacent thymine bases bond with each other, instead of across the "ladder". This "thymine dimer" makes a bulge, and the distorted DNA molecule does not function properly.
Sunburn effect (as measured by the UV index) is the product of the sunlight spectrum (radiation intensity) and the erythemal action spectrum (skin sensitivity) across the range of UV wavelengths. Sunburn production per milliwatt of radiation intensity is increased by nearly a factor of 100 between the near UV‑B wavelengths of 315–295 nm
Demonstration of the effect of sunscreen. The man's face has sunscreen on his right side only. The left image is a regular photograph of his face; the right image is of reflected UV light. The side of the face with sunscreen is darker because the sunscreen absorbs the UV light.
Signs are often used to warn of the hazard of strong UV sources.
UV damaged polypropylene rope (left) and new rope (right)
IR spectrum showing carbonyl absorption due to UV degradation of polyethylene
A portrait taken using only UV light between the wavelengths of 335 and 365 nanometers.
Aurora at Jupiter's north pole as seen in ultraviolet light by the Hubble Space Telescope.
A bird appears on many Visa credit cards when they are held under a UV light source
After a training exercise involving fake body fluids, a healthcare worker's personal protective equipment is checked with ultraviolet light to find invisible drops of fluids. These fluids could contain deadly viruses or other contamination.
A collection of mineral samples brilliantly fluorescing at various wavelengths as seen while being irradiated by UV light.
Effects of UV on finished surfaces in 0, 20 and 43 hours.
A low-pressure mercury vapor discharge tube floods the inside of a hood with shortwave UV light when not in use, sterilizing microbiological contaminants from irradiated surfaces.
Entomologist using a UV light for collecting beetles in Chaco, Paraguay.

Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30 PHz) to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays.

Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce.

Hydrogen atomic orbitals at different energy levels. The more opaque areas are where one is most likely to find an electron at any given time.

Electron

1 links

Subatomic particle whose electric charge is negative one elementary charge.

Subatomic particle whose electric charge is negative one elementary charge.

Hydrogen atomic orbitals at different energy levels. The more opaque areas are where one is most likely to find an electron at any given time.
A beam of electrons deflected in a circle by a magnetic field
J. J. Thomson
Robert Millikan
The Bohr model of the atom, showing states of an electron with energy quantized by the number n. An electron dropping to a lower orbit emits a photon equal to the energy difference between the orbits.
In quantum mechanics, the behavior of an electron in an atom is described by an orbital, which is a probability distribution rather than an orbit. In the figure, the shading indicates the relative probability to "find" the electron, having the energy corresponding to the given quantum numbers, at that point.
Standard Model of elementary particles. The electron (symbol e) is on the left.
Example of an antisymmetric wave function for a quantum state of two identical fermions in a 1-dimensional box. If the particles swap position, the wave function inverts its sign.
A schematic depiction of virtual electron–positron pairs appearing at random near an electron (at lower left)
A particle with charge q (at left) is moving with velocity v through a magnetic field B that is oriented toward the viewer. For an electron, q is negative so it follows a curved trajectory toward the top.
Here, Bremsstrahlung is produced by an electron e deflected by the electric field of an atomic nucleus. The energy change E2 − E1 determines the frequency f of the emitted photon.
Probability densities for the first few hydrogen atom orbitals, seen in cross-section. The energy level of a bound electron determines the orbital it occupies, and the color reflects the probability of finding the electron at a given position.
A lightning discharge consists primarily of a flow of electrons. The electric potential needed for lightning can be generated by a triboelectric effect.
Lorentz factor as a function of velocity. It starts at value 1 and goes to infinity as v approaches c.
Pair production of an electron and positron, caused by the close approach of a photon with an atomic nucleus. The lightning symbol represents an exchange of a virtual photon, thus an electric force acts. The angle between the particles is very small.
An extended air shower generated by an energetic cosmic ray striking the Earth's atmosphere
Aurorae are mostly caused by energetic electrons precipitating into the atmosphere.
During a NASA wind tunnel test, a model of the Space Shuttle is targeted by a beam of electrons, simulating the effect of ionizing gases during re-entry.

While studying naturally fluorescing minerals in 1896, the French physicist Henri Becquerel discovered that they emitted radiation without any exposure to an external energy source.

In his 1924 dissertation Recherches sur la théorie des quanta (Research on Quantum Theory), French physicist Louis de Broglie hypothesized that all matter can be represented as a de Broglie wave in the manner of light.

An electron beam can be used to supplement the treatment of areas that have been irradiated by X-rays.