A report on Hemoglobin

Max Perutz won the Nobel Prize for chemistry for his work determining the molecular structure of hemoglobin and myoglobin
300x300px
Heme b group
A schematic visual model of oxygen-binding process, showing all four monomers and hemes, and protein chains only as diagrammatic coils, to facilitate visualization into the molecule. Oxygen is not shown in this model, but, for each of the iron atoms, it binds to the iron (red sphere) in the flat heme. For example, in the upper-left of the four hemes shown, oxygen binds at the left of the iron atom shown in the upper-left of diagram. This causes the iron atom to move backward into the heme that holds it (the iron moves upward as it binds oxygen, in this illustration), tugging the histidine residue (modeled as a red pentagon on the right of the iron) closer, as it does. This, in turn, pulls on the protein chain holding the histidine.
The sigmoidal shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin.
Gene expression of hemoglobin before and after birth. Also identifies the types of cells and organs in which the gene expression (data on Wood W.G., (1976). Br. Med. Bull. 32, 282.)
A hemoglobin concentration measurement being administered before a blood donation at the American Red Cross Boston Blood Donation Center.
The giant tube worm Riftia pachyptila showing red hemoglobin-containing plumes
Heart of Steel (Hemoglobin) (2005) by Julian Voss-Andreae. The images show the 5-foot (1.50 m) tall sculpture right after installation, after 10 days, and after several months of exposure to the elements.

Iron-containing oxygen-transport metalloprotein in red blood cells (erythrocytes) of almost all vertebrates (the exception being the fish family Channichthyidae) as well as the tissues of some invertebrates.

- Hemoglobin

105 related topics with Alpha

Overall

Scanning electron micrograph of human red blood cells (ca. 6–8 μm in diameter)

Red blood cell

19 links

Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek erythros for "red" and kytos for "hollow vessel", with -cyte translated as "cell" in modern usage), are the most common type of blood cell and the vertebrate's principal means of delivering oxygen (O2) to the body tissues—via blood flow through the circulatory system.

Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek erythros for "red" and kytos for "hollow vessel", with -cyte translated as "cell" in modern usage), are the most common type of blood cell and the vertebrate's principal means of delivering oxygen (O2) to the body tissues—via blood flow through the circulatory system.

Scanning electron micrograph of human red blood cells (ca. 6–8 μm in diameter)
There is an immense size variation in vertebrate red blood cells, as well as a correlation between cell and nucleus size. Mammalian red blood cells, which do not contain nuclei, are considerably smaller than those of most other vertebrates.
222x222px
Typical mammalian red blood cells: (a) seen from surface; (b) in profile, forming rouleaux; (c) rendered spherical by water; (d) rendered crenate (shrunken and spiky) by salt. (c) and (d) do not normally occur in the body. The last two shapes are due to water being transported into, and out of, the cells, by osmosis.
Scanning electron micrograph of blood cells. From left to right: human red blood cell, thrombocyte (platelet), leukocyte.
Two drops of blood are shown with a bright red oxygenated drop on the left and a deoxygenated drop on the right.
Animation of a typical human red blood cell cycle in the circulatory system. This animation occurs at a faster rate (~20 seconds of the average 60-second cycle) and shows the red blood cell deforming as it enters capillaries, as well as the bars changing color as the cell alternates in states of oxygenation along the circulatory system.
The most common red blood cell membrane lipids, schematically disposed as they are distributed on the bilayer. Relative abundances are not at scale.
Red blood cell membrane proteins separated by SDS-PAGE and silverstained
Red blood cell membrane major proteins
Affected by Sickle-cell disease, red blood cells alter shape and threaten to damage internal organs.
Effect of osmotic pressure on blood cells
Micrographs of the effects of osmotic pressure
Variations of red blood cell shape, overall termed poikilocytosis.

The cytoplasm of a red blood cell is rich in hemoglobin, an iron-containing biomolecule that can bind oxygen and is responsible for the red color of the cells and the blood.

Binding of oxygen to a heme prosthetic group.

Heme

14 links

Binding of oxygen to a heme prosthetic group.
Space-filling model of the Fe-protoporphyrin IX subunit of heme B. Axial ligands omitted. Color scheme: grey=iron, blue=nitrogen, black=carbon, white=hydrogen, red=oxygen
The heme group of succinate dehydrogenase bound to histidine, an electron carrier in the mitochondrial electron transfer chain. The large semi-transparent sphere indicates the location of the iron ion. From.
Structure of Fe-porphyrin subunit of heme B.
Structure of Fe-porphyrin subunit of heme A. Heme A is synthesized from heme B. In two sequential reactions a 17-hydroxyethylfarnesyl moiety is added at the 2-position and an aldehyde is added at the 8-position.
Heme synthesis in the cytoplasm and mitochondrion
Heme breakdown

Heme, or haem (pronounced HEEM), is a precursor to hemoglobin, which is necessary to bind oxygen in the bloodstream.

Blood smear showing iron-deficiency anemia, with small, pale red blood cells.

Anemia

13 links

Blood smear showing iron-deficiency anemia, with small, pale red blood cells.
Main symptoms that may appear in anemia
The hand of a person with severe anemia (on the left, with ring) compared to one without (on the right)
Figure shows normal red blood cells flowing freely in a blood vessel. The inset image shows a cross-section of a normal red blood cell with normal hemoglobin.
Peripheral blood smear microscopy of a patient with iron-deficiency anemia
A Giemsa-stained blood film from a person with iron-deficiency anemia. This person also had hemoglobin Kenya.

Anemia or anaemia (British English) is a blood disorder in which the blood has a reduced ability to carry oxygen due to a lower than normal number of red blood cells, or a reduction in the amount of hemoglobin.

Molar volume vs. pressure for α iron at room temperature

Iron

11 links

Chemical element with symbol Fe and atomic number 26.

Chemical element with symbol Fe and atomic number 26.

Molar volume vs. pressure for α iron at room temperature
Low-pressure phase diagram of pure iron
Magnetization curves of 9 ferromagnetic materials, showing saturation. 1.Sheet steel, 2.Silicon steel, 3.Cast steel, 4.Tungsten steel, 5.Magnet steel, 6.Cast iron, 7.Nickel, 8.Cobalt, 9.Magnetite
A polished and chemically etched piece of an iron meteorite, believed to be similar in composition to the Earth's metallic core, showing individual crystals of the iron-nickel alloy (Widmanstatten pattern)
Ochre path in Roussillon.
Banded iron formation in McKinley Park, Minnesota.
Pourbaix diagram of iron
Hydrated iron(III) chloride (ferric chloride)
Comparison of colors of solutions of ferrate (left) and permanganate (right)
Blue-green iron(II) sulfate heptahydrate
The two enantiomorphs of the ferrioxalate ion
Crystal structure of iron(II) oxalate dihydrate, showing iron (gray), oxygen (red), carbon (black), and hydrogen (white) atoms.
Blood-red positive thiocyanate test for iron(III)
Iron penta- carbonyl
Prussian blue
Iron harpoon head from Greenland. The iron edge covers a narwhal tusk harpoon using meteorite iron from the Cape York meteorite, one of the largest iron meteorites known.
The symbol for Mars has been used since antiquity to represent iron.
The iron pillar of Delhi is an example of the iron extraction and processing methodologies of early India.
Iron sickle from Ancient Greece.
Coalbrookdale by Night, 1801. Blast furnaces light the iron making town of Coalbrookdale.
"Gold gab ich für Eisen" – "I gave gold for iron". German-American brooch from WWI.
Iron powder
Iron furnace in Columbus, Ohio, 1922
17th century Chinese illustration of workers at a blast furnace, making wrought iron from pig iron
How iron was extracted in the 19th century
This heap of iron ore pellets will be used in steel production.
A pot of molten iron being used to make steel
Iron-carbon phase diagram
Photon mass attenuation coefficient for iron.
Structure of Heme b; in the protein additional ligand(s) would be attached to Fe.
A heme unit of human carboxyhemoglobin, showing the carbonyl ligand at the apical position, trans to the histidine residue

The body of an adult human contains about 4 grams (0.005% body weight) of iron, mostly in hemoglobin and myoglobin.

Molecular orbital description of Fe-O{{sub|2}} interaction in myoglobin.<ref>{{cite journal | vauthors = Drago RS | title = Free radical reactions of transition metal systems | journal = Coordination Chemistry Reviews | year = 1980 | volume = 32 | pages = 97–110 | doi = 10.1016/S0010-8545(00)80372-0 | issue = 2 }}</ref>

Myoglobin

11 links

Iron- and oxygen-binding protein found in the cardiac and skeletal muscle tissue of vertebrates in general and in almost all mammals.

Iron- and oxygen-binding protein found in the cardiac and skeletal muscle tissue of vertebrates in general and in almost all mammals.

Molecular orbital description of Fe-O{{sub|2}} interaction in myoglobin.<ref>{{cite journal | vauthors = Drago RS | title = Free radical reactions of transition metal systems | journal = Coordination Chemistry Reviews | year = 1980 | volume = 32 | pages = 97–110 | doi = 10.1016/S0010-8545(00)80372-0 | issue = 2 }}</ref>
This is an image of an oxygenated myoglobin molecule. The image shows the structural change when oxygen is bound to the iron atom of the heme prosthetic group. The oxygen atoms are colored in green, the iron atom is colored in red, and the heme group is colored in blue.

Myoglobin is distantly related to hemoglobin.

Figure (A) shows normal red blood cells flowing freely through a blood vessel. The inset shows a cross-section of a normal red blood cell with normal haemoglobin. Figure (B) shows abnormal, sickled red blood cells sticking at the branching point in a blood vessel. The inset image shows a cross-section of a sickle cell with long polymerized sickle haemoglobin (HbS) strands stretching and distorting the cell shape to look like a crescent moon.

Sickle cell disease

10 links

Group of blood disorders typically inherited from a person's parents.

Group of blood disorders typically inherited from a person's parents.

Figure (A) shows normal red blood cells flowing freely through a blood vessel. The inset shows a cross-section of a normal red blood cell with normal haemoglobin. Figure (B) shows abnormal, sickled red blood cells sticking at the branching point in a blood vessel. The inset image shows a cross-section of a sickle cell with long polymerized sickle haemoglobin (HbS) strands stretching and distorting the cell shape to look like a crescent moon.
Sickle cell anaemia
Sickle cells in human blood - both normal red blood cells and sickle-shaped cells are present.
Normal blood cells next to a sickle blood cell, coloured scanning electron microscope image
Sickle cell disease is inherited in an autosomal recessive pattern.
Distribution of the sickle cell trait, shown in pink and purple
Historical distribution of malaria (no longer endemic in Europe), shown in green
Modern distribution of malaria
Base-pair substitution that causes sickle cell anemia
HBB gene (responsible for sickle cell anaemia) is located on the short (p) arm of chromosome 11 at position 15.5.
Scanning electron micrograph showing a mixture of red blood cells, some with round normal morphology, some with mild sickling showing elongation and bending
Possible advantage of being heterozygous for sickle cell anemia disease (A) vs. normal blood cell response (B) when infected with malaria
Percentage of newborns screened for sickle cell disease within Metropolitan France from 2006 to 2018
Percentage of newborns screened regionally and overall for sickle cell disease in Metropolitan France in 2018

It results in an abnormality in the oxygen-carrying protein haemoglobin found in red blood cells.

Joseph Priestley is usually given priority in the discovery.

Oxygen

12 links

Chemical element with the symbol O and atomic number 8.

Chemical element with the symbol O and atomic number 8.

Joseph Priestley is usually given priority in the discovery.
Antoine Lavoisier discredited the phlogiston theory.
Robert H. Goddard and a liquid oxygen-gasoline rocket
An experiment setup for preparation of oxygen in academic laboratories
Orbital diagram, after Barrett (2002), showing the participating atomic orbitals from each oxygen atom, the molecular orbitals that result from their overlap, and the aufbau filling of the orbitals with the 12 electrons, 6 from each O atom, beginning from the lowest-energy orbitals, and resulting in covalent double-bond character from filled orbitals (and cancellation of the contributions of the pairs of σ and σ* and π and π* orbital pairs).
Liquid oxygen, temporarily suspended in a magnet owing to its paramagnetism
Space-filling model representation of dioxygen (O2) molecule
Oxygen discharge (spectrum) tube
Late in a massive star's life, 16O concentrates in the O-shell, 17O in the H-shell and 18O in the He-shell.
Cold water holds more dissolved.
500 million years of climate change vs. 18O
Photosynthesis splits water to liberate and fixes into sugar in what is called a Calvin cycle.
build-up in Earth's atmosphere: 1) no produced; 2) produced, but absorbed in oceans & seabed rock; 3)  starts to gas out of the oceans, but is absorbed by land surfaces and formation of ozone layer; 4–5)  sinks filled and the gas accumulates
Hofmann electrolysis apparatus used in electrolysis of water.
Oxygen and MAPP gas compressed-gas cylinders with regulators
An oxygen concentrator in an emphysema patient's house
Low pressure pure is used in space suits.
Most commercially produced is used to smelt and/or decarburize iron.
Water is the most familiar oxygen compound.
Oxides, such as iron oxide or rust, form when oxygen combines with other elements.
Main symptoms of oxygen toxicity
The interior of the Apollo 1 Command Module. Pure at higher than normal pressure and a spark led to a fire and the loss of the Apollo 1 crew.

Hemoglobin binds, changing color from bluish red to bright red ( is released from another part of hemoglobin through the Bohr effect).

Venous (darker) and arterial (brighter) blood

Blood

10 links

Body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells.

Body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells.

Venous (darker) and arterial (brighter) blood
Hemoglobin, a globular protein
green = haem (or heme) groups
red & blue = protein subunits
A scanning electron microscope (SEM) image of a normal red blood cell (left), a platelet (middle), and a white blood cell (right)
Vertebrate red blood cell types, measurements in micrometers
Frog red blood cells magnified 1000 times
Turtle red blood cells magnified 1000 times
Chicken red blood cells magnified 1000 times
Human red blood cells magnified 1000 times
Circulation of blood through the human heart
Basic hemoglobin saturation curve. It is moved to the right in higher acidity (more dissolved carbon dioxide) and to the left in lower acidity (less dissolved carbon dioxide)
Capillary blood from a bleeding finger
Venous blood collected during blood donation
Jan Janský is credited with the first classification of blood into four types (A, B, AB, and O)
Human blood fractioned by centrifugation: Plasma (upper, yellow layer), buffy coat (middle, thin white layer) and erythrocyte layer (bottom, red layer) can be seen.
Blood circulation: Red = oxygenated, blue = deoxygenated
Illustration depicting formed elements of blood
Two tubes of EDTA-anticoagulated blood.

These contain hemoglobin, an iron-containing protein, which facilitates oxygen transport by reversibly binding to this respiratory gas thereby increasing its solubility in blood.

A representation of the 3D structure of the protein myoglobin showing turquoise α-helices. This protein was the first to have its structure solved by X-ray crystallography. Toward the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).

Protein

10 links

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues.

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues.

A representation of the 3D structure of the protein myoglobin showing turquoise α-helices. This protein was the first to have its structure solved by X-ray crystallography. Toward the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).
John Kendrew with model of myoglobin in progress
Chemical structure of the peptide bond (bottom) and the three-dimensional structure of a peptide bond between an alanine and an adjacent amino acid (top/inset). The bond itself is made of the CHON elements.
Resonance structures of the peptide bond that links individual amino acids to form a protein polymer
A ribosome produces a protein using mRNA as template
The DNA sequence of a gene encodes the amino acid sequence of a protein
The crystal structure of the chaperonin, a huge protein complex. A single protein subunit is highlighted. Chaperonins assist protein folding.
Three possible representations of the three-dimensional structure of the protein triose phosphate isomerase. Left: All-atom representation colored by atom type. Middle: Simplified representation illustrating the backbone conformation, colored by secondary structure. Right: Solvent-accessible surface representation colored by residue type (acidic residues red, basic residues blue, polar residues green, nonpolar residues white).
Molecular surface of several proteins showing their comparative sizes. From left to right are: immunoglobulin G (IgG, an antibody), hemoglobin, insulin (a hormone), adenylate kinase (an enzyme), and glutamine synthetase (an enzyme).
The enzyme hexokinase is shown as a conventional ball-and-stick molecular model. To scale in the top right-hand corner are two of its substrates, ATP and glucose.
Ribbon diagram of a mouse antibody against cholera that binds a carbohydrate antigen
Proteins in different cellular compartments and structures tagged with green fluorescent protein (here, white)
Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein structure, in this case hemoglobin containing heme units

The first protein structures to be solved were hemoglobin by Max Perutz and myoglobin by Sir John Cowdery Kendrew, in 1958.

Peripheral blood film from a person with delta-beta thalassemia

Thalassemia

8 links

Peripheral blood film from a person with delta-beta thalassemia
Left: Hand of a person with severe anemia. Right: Hand of a person without anemia.
Thalassemia has an autosomal recessive pattern of inheritance.

Thalassemias are inherited blood disorders characterized by decreased hemoglobin production.