A report on InfraredLight and Visible spectrum

A pseudocolor image of two people taken in long-wavelength infrared (body-temperature thermal) radiation.
A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated.
White light is dispersed by a prism into the colors of the visible spectrum.
This false-color infrared space telescope image has blue, green and red corresponding to 3.4, 4.6, and 12 μm wavelengths, respectively.
The electromagnetic spectrum, with the visible portion highlighted
Laser beams with visible spectrum
Plot of atmospheric transmittance in part of the infrared region
800px
Newton's color circle, from Opticks of 1704, showing the colors he associated with musical notes. The spectral colors from red to violet are divided by the notes of the musical scale, starting at D. The circle completes a full octave, from D to D. Newton's circle places red, at one end of the spectrum, next to violet, at the other. This reflects the fact that non-spectral purple colors are observed when red and violet light are mixed.
Materials with higher emissivity appear closer to their true temperature than materials that reflect more of their different-temperature surroundings. In this thermal image, the more reflective ceramic cylinder, reflecting the cooler surroundings, appears to be colder than its cubic container (made of more emissive silicon carbide), while in fact, they have the same temperature.
Beam of sun light inside the cavity of Rocca ill'Abissu at Fondachelli-Fantina, Sicily
Newton's observation of prismatic colors (David Brewster 1855)
Active-infrared night vision: the camera illuminates the scene at infrared wavelengths invisible to the human eye. Despite a dark back-lit scene, active-infrared night vision delivers identifying details, as seen on the display monitor.
Due to refraction, the straw dipped in water appears bent and the ruler scale compressed when viewed from a shallow angle.
How visible light interacts with objects to make them colorful
Thermography helped to determine the temperature profile of the Space Shuttle thermal protection system during re-entry.
Hong Kong illuminated by colourful artificial lighting.
Approximation of spectral colors on a display results in somewhat distorted chromaticity
Hyperspectral thermal infrared emission measurement, an outdoor scan in winter conditions, ambient temperature −15 °C, image produced with a Specim LWIR hyperspectral imager. Relative radiance spectra from various targets in the image are shown with arrows. The infrared spectra of the different objects such as the watch clasp have clearly distinctive characteristics. The contrast level indicates the temperature of the object.
Pierre Gassendi.
Earth's atmosphere partially or totally blocks some wavelengths of electromagnetic radiation, but in visible light it is mostly transparent
Infrared light from the LED of a remote control as recorded by a digital camera
Christiaan Huygens.
Reflected light photograph in various infrared spectra to illustrate the appearance as the wavelength of light changes.
Thomas Young's sketch of a double-slit experiment showing diffraction. Young's experiments supported the theory that light consists of waves.
Infrared hair dryer for hair salons, c. 2010s
400x400px
IR satellite picture of cumulonimbus clouds over the Great Plains of the United States.
The greenhouse effect with molecules of methane, water, and carbon dioxide re-radiating solar heat
Beta Pictoris with its planet Beta Pictoris b, the light-blue dot off-center, as seen in infrared. It combines two images, the inner disc is at 3.6 μm.
An infrared reflectogram of Mona Lisa by Leonardo da Vinci
frameless
Thermographic image of a snake eating a mouse
Infrared radiation was discovered in 1800 by William Herschel.
Infrared hair dryer for hair salons, c. 2010s

Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light.

- Infrared

Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz, between the infrared (with longer wavelengths) and the ultraviolet (with shorter wavelengths).

- Light

Electromagnetic radiation in this range of wavelengths is called visible light or simply light.

- Visible spectrum

IR is generally understood to encompass wavelengths from around 1 millimeter (300 GHz) to the nominal red edge of the visible spectrum, around 700 nanometers (430 THz).

- Infrared

Under optimal conditions these limits of human perception can extend to 310 nm (ultraviolet) and 1100 nm (near infrared).

- Visible spectrum

Generally, electromagnetic radiation (EMR) is classified by wavelength into radio waves, microwaves, infrared, the visible spectrum that we perceive as light, ultraviolet, X-rays and gamma rays.

- Light
A pseudocolor image of two people taken in long-wavelength infrared (body-temperature thermal) radiation.

4 related topics with Alpha

Overall

The electromagnetic spectrum

Electromagnetic spectrum

2 links

Range of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.

Range of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.

The electromagnetic spectrum
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths
Plot of Earth's atmospheric opacity to various wavelengths of electromagnetic radiation. This is the surface-to-space opacity, the atmosphere is transparent to longwave radio transmissions within the troposphere but opaque to space due to the ionosphere.
Plot of atmospheric opacity for terrestrial to terrestrial transmission showing the molecules responsible for some of the resonances
The amount of penetration of UV relative to altitude in Earth's ozone

This frequency range is divided into separate bands, and the electromagnetic waves within each frequency band are called by different names; beginning at the low frequency (long wavelength) end of the spectrum these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays at the high-frequency (short wavelength) end.

The wavelength of UV rays is shorter than the violet end of the visible spectrum but longer than the X-ray.

☉

Sun

2 links

Star at the center of the Solar System.

Star at the center of the Solar System.

☉
Illustration of the Sun's structure, in false color for contrast
Illustration of a proton-proton reaction chain, from hydrogen forming deuterium, helium-3, and regular helium-4.
Illustration of different stars's internal structure, the Sun in the middle has an inner radiating zone and an outer convective zone.
High-resolution image of the Sun's surface taken by the Daniel K. Inouye Solar Telescope (DKIST)
During a total solar eclipse, the solar corona can be seen with the naked eye, during the brief period of totality.
The Sun's transition region taken by Hinode's Solar Optical Telescope
Sunlight and glare seen overlooking from the International Space Station
Once outside the Sun's surface, neutrinos and photons travel at the speed of light
Visible light photograph of sunspot
Measurements from 2005 of solar cycle variation during the previous 30 years
300x300px
The size of the current Sun (now in the main sequence) compared to its estimated size during its red-giant phase in the future
The Solar System, with sizes of the Sun and planets to scale. The terrestrial planets are on the right, the gas and ice giants are on the left.
The Trundholm sun chariot pulled by a horse is a sculpture believed to be illustrating an important part of Nordic Bronze Age mythology.
Sol, the Sun, from a 1550 edition of Guido Bonatti's Liber astronomiae.
False-color image taken in 2010 as seen in 30.4-nanometer ultraviolet light wavelength
A false-color of a coronal hole on the Sun forming a question mark (22 December 2017)
A false-color solar prominence erupts in August 2012, as captured by the Solar Dynamics Observatory
The Sun seen from Earth, with glare from the lenses. The eye also see glare when looked towards the Sun directly.
Sun and Immortal Birds Gold Ornament by ancient Shu people. The center is a sun pattern with twelve points around which four birds fly in the same counterclockwise direction, Shang dynasty

It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy mainly as light, ultraviolet, and infrared radiation.

During early studies of the optical spectrum of the photosphere, some absorption lines were found that did not correspond to any chemical elements then known on Earth.

400x400px

Electromagnetic radiation

1 links

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, propagating through space, carrying electromagnetic radiant energy.

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, propagating through space, carrying electromagnetic radiant energy.

400x400px
Shows the relative wavelengths of the electromagnetic waves of three different colours of light (blue, green, and red) with a distance scale in micrometers along the x-axis.
In electromagnetic radiation (such as microwaves from an antenna, shown here) the term "radiation" applies only to the parts of the electromagnetic field that radiate into infinite space and decrease in intensity by an inverse-square law of power, so that the total radiation energy that crosses through an imaginary spherical surface is the same, no matter how far away from the antenna the spherical surface is drawn. Electromagnetic radiation thus includes the far field part of the electromagnetic field around a transmitter. A part of the "near-field" close to the transmitter, forms part of the changing electromagnetic field, but does not count as electromagnetic radiation.
Electromagnetic waves can be imagined as a self-propagating transverse oscillating wave of electric and magnetic fields. This 3D animation shows a plane linearly polarized wave propagating from left to right. The electric and magnetic fields in such a wave are in-phase with each other, reaching minima and maxima together.
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation.
James Clerk Maxwell
Electromagnetic spectrum with visible light highlighted
Rough plot of Earth's atmospheric absorption and scattering (or opacity) of various wavelengths of electromagnetic radiation

It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

EM radiation (the designation 'radiation' excludes static electric and magnetic and near fields) is classified by wavelength into radio, microwave, infrared, visible, ultraviolet, X-rays and gamma rays.

The Sun, as seen from low Earth orbit overlooking the International Space Station. This sunlight is not filtered by the lower atmosphere, which blocks much of the solar spectrum.

Sunlight

1 links

The Sun, as seen from low Earth orbit overlooking the International Space Station. This sunlight is not filtered by the lower atmosphere, which blocks much of the solar spectrum.
Sunrise over the Gulf of Mexico and Florida. Taken on 20 October 1968 from Apollo 7.
Sunlight on Mars is dimmer than on Earth. This photo of a Martian sunset was imaged by Mars Pathfinder.
Solar irradiance spectrum at top of atmosphere, on a linear scale and plotted against wavenumber
Sunlight shining through clouds, giving rise to crepuscular rays
Spectrum of the visible wavelengths at approximately sea level; illumination by direct sunlight compared with direct sunlight scattered by cloud cover and with indirect sunlight by varying degrees of cloud cover. The yellow line shows the power spectrum of direct sunlight under optimal conditions. To aid comparison, the other illumination conditions are scaled by the factor shown in the key so they match at about 470 nm (blue light).
Sunlight penetrating through a forest canopy in Germany
Édouard Manet: Le déjeuner sur l'herbe (1862-63)
Téli verőfény ("Winter Sunshine") by László Mednyánszky, early 20th century
Sun bathers in Finland

Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light.

When direct solar radiation is not blocked by clouds, it is experienced as sunshine, a combination of bright light and radiant heat.