A report on Light

A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated.
The electromagnetic spectrum, with the visible portion highlighted
800px
Beam of sun light inside the cavity of Rocca ill'Abissu at Fondachelli-Fantina, Sicily
Due to refraction, the straw dipped in water appears bent and the ruler scale compressed when viewed from a shallow angle.
Hong Kong illuminated by colourful artificial lighting.
Pierre Gassendi.
Christiaan Huygens.
Thomas Young's sketch of a double-slit experiment showing diffraction. Young's experiments supported the theory that light consists of waves.
400x400px

Electromagnetic radiation within the portion of the electromagnetic spectrum that is perceived by the human eye.

- Light
A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated.

81 related topics with Alpha

Overall

400x400px

Electromagnetic radiation

23 links

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, propagating through space, carrying electromagnetic radiant energy.

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, propagating through space, carrying electromagnetic radiant energy.

400x400px
Shows the relative wavelengths of the electromagnetic waves of three different colours of light (blue, green, and red) with a distance scale in micrometers along the x-axis.
In electromagnetic radiation (such as microwaves from an antenna, shown here) the term "radiation" applies only to the parts of the electromagnetic field that radiate into infinite space and decrease in intensity by an inverse-square law of power, so that the total radiation energy that crosses through an imaginary spherical surface is the same, no matter how far away from the antenna the spherical surface is drawn. Electromagnetic radiation thus includes the far field part of the electromagnetic field around a transmitter. A part of the "near-field" close to the transmitter, forms part of the changing electromagnetic field, but does not count as electromagnetic radiation.
Electromagnetic waves can be imagined as a self-propagating transverse oscillating wave of electric and magnetic fields. This 3D animation shows a plane linearly polarized wave propagating from left to right. The electric and magnetic fields in such a wave are in-phase with each other, reaching minima and maxima together.
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation.
James Clerk Maxwell
Electromagnetic spectrum with visible light highlighted
Rough plot of Earth's atmospheric absorption and scattering (or opacity) of various wavelengths of electromagnetic radiation

It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

Photons are emitted by a cyan laser beam outside, orange laser beam inside calcite and its fluorescence

Photon

17 links

Photons are emitted by a cyan laser beam outside, orange laser beam inside calcite and its fluorescence
Photoelectric effect: the emission of electrons from a metal plate caused by light quanta – photons.
The cone shows possible values of wave 4-vector of a photon. The "time" axis gives the angular frequency (rad⋅s−1) and the "space" axis represents the angular wavenumber (rad⋅m−1). Green and indigo represent left and right polarization
Thomas Young's double-slit experiment in 1801 showed that light can act as a wave, helping to invalidate early particle theories of light.
In 1900, Maxwell's theoretical model of light as oscillating electric and magnetic fields seemed complete. However, several observations could not be explained by any wave model of electromagnetic radiation, leading to the idea that light-energy was packaged into quanta described by . Later experiments showed that these light-quanta also carry momentum and, thus, can be considered particles: The photon concept was born, leading to a deeper understanding of the electric and magnetic fields themselves.
Up to 1923, most physicists were reluctant to accept that light itself was quantized. Instead, they tried to explain photon behaviour by quantizing only matter, as in the Bohr model of the hydrogen atom (shown here). Even though these semiclassical models were only a first approximation, they were accurate for simple systems and they led to quantum mechanics.
Photons in a Mach–Zehnder interferometer exhibit wave-like interference and particle-like detection at single-photon detectors.
Stimulated emission (in which photons "clone" themselves) was predicted by Einstein in his kinetic analysis, and led to the development of the laser. Einstein's derivation inspired further developments in the quantum treatment of light, which led to the statistical interpretation of quantum mechanics.
Different electromagnetic modes (such as those depicted here) can be treated as independent simple harmonic oscillators. A photon corresponds to a unit of energy E = hν in its electromagnetic mode.

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force.

The electromagnetic spectrum

Electromagnetic spectrum

13 links

Range of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.

Range of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.

The electromagnetic spectrum
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths
Plot of Earth's atmospheric opacity to various wavelengths of electromagnetic radiation. This is the surface-to-space opacity, the atmosphere is transparent to longwave radio transmissions within the troposphere but opaque to space due to the ionosphere.
Plot of atmospheric opacity for terrestrial to terrestrial transmission showing the molecules responsible for some of the resonances
The amount of penetration of UV relative to altitude in Earth's ozone

This frequency range is divided into separate bands, and the electromagnetic waves within each frequency band are called by different names; beginning at the low frequency (long wavelength) end of the spectrum these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays at the high-frequency (short wavelength) end.

A pseudocolor image of two people taken in long-wavelength infrared (body-temperature thermal) radiation.

Infrared

9 links

A pseudocolor image of two people taken in long-wavelength infrared (body-temperature thermal) radiation.
This false-color infrared space telescope image has blue, green and red corresponding to 3.4, 4.6, and 12 μm wavelengths, respectively.
Plot of atmospheric transmittance in part of the infrared region
Materials with higher emissivity appear closer to their true temperature than materials that reflect more of their different-temperature surroundings. In this thermal image, the more reflective ceramic cylinder, reflecting the cooler surroundings, appears to be colder than its cubic container (made of more emissive silicon carbide), while in fact, they have the same temperature.
Active-infrared night vision: the camera illuminates the scene at infrared wavelengths invisible to the human eye. Despite a dark back-lit scene, active-infrared night vision delivers identifying details, as seen on the display monitor.
Thermography helped to determine the temperature profile of the Space Shuttle thermal protection system during re-entry.
Hyperspectral thermal infrared emission measurement, an outdoor scan in winter conditions, ambient temperature −15 °C, image produced with a Specim LWIR hyperspectral imager. Relative radiance spectra from various targets in the image are shown with arrows. The infrared spectra of the different objects such as the watch clasp have clearly distinctive characteristics. The contrast level indicates the temperature of the object.
Infrared light from the LED of a remote control as recorded by a digital camera
Reflected light photograph in various infrared spectra to illustrate the appearance as the wavelength of light changes.
Infrared hair dryer for hair salons, c. 2010s
IR satellite picture of cumulonimbus clouds over the Great Plains of the United States.
The greenhouse effect with molecules of methane, water, and carbon dioxide re-radiating solar heat
Beta Pictoris with its planet Beta Pictoris b, the light-blue dot off-center, as seen in infrared. It combines two images, the inner disc is at 3.6 μm.
An infrared reflectogram of Mona Lisa by Leonardo da Vinci
frameless
Thermographic image of a snake eating a mouse
Infrared radiation was discovered in 1800 by William Herschel.
Infrared hair dryer for hair salons, c. 2010s

Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light.

The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown.

Wavelength

10 links

Spatial period of a periodic wave—the distance over which the wave's shape repeats.

Spatial period of a periodic wave—the distance over which the wave's shape repeats.

The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown.
Sinusoidal standing waves in a box that constrains the end points to be nodes will have an integer number of half wavelengths fitting in the box.
A standing wave (black) depicted as the sum of two propagating waves traveling in opposite directions (red and blue)
Wavelength is decreased in a medium with slower propagation.
Refraction: upon entering a medium where its speed is lower, the wave changes direction.
Separation of colors by a prism (click for animation)
Various local wavelengths on a crest-to-crest basis in an ocean wave approaching shore
A sinusoidal wave travelling in a nonuniform medium, with loss
A wave on a line of atoms can be interpreted according to a variety of wavelengths.
Near-periodic waves over shallow water
Wavelength of a periodic but non-sinusoidal waveform.
A propagating wave packet
Pattern of light intensity on a screen for light passing through two slits. The labels on the right refer to the difference of the path lengths from the two slits, which are idealized here as point sources.
Diffraction pattern of a double slit has a single-slit envelope.
Relationship between wavelength, angular wavelength, and other wave properties.

Examples of waves are sound waves, light, water waves and periodic electrical signals in a conductor.

White light is dispersed by a prism into the colors of the visible spectrum.

Visible spectrum

9 links

Portion of the electromagnetic spectrum that is visible to the human eye.

Portion of the electromagnetic spectrum that is visible to the human eye.

White light is dispersed by a prism into the colors of the visible spectrum.
Laser beams with visible spectrum
Newton's color circle, from Opticks of 1704, showing the colors he associated with musical notes. The spectral colors from red to violet are divided by the notes of the musical scale, starting at D. The circle completes a full octave, from D to D. Newton's circle places red, at one end of the spectrum, next to violet, at the other. This reflects the fact that non-spectral purple colors are observed when red and violet light are mixed.
Newton's observation of prismatic colors (David Brewster 1855)
How visible light interacts with objects to make them colorful
Approximation of spectral colors on a display results in somewhat distorted chromaticity
Earth's atmosphere partially or totally blocks some wavelengths of electromagnetic radiation, but in visible light it is mostly transparent

Electromagnetic radiation in this range of wavelengths is called visible light or simply light.

Natural color x-ray photogram of a wine scene

X-ray

8 links

Penetrating form of high-energy electromagnetic radiation.

Penetrating form of high-energy electromagnetic radiation.

Natural color x-ray photogram of a wine scene
Example of a Crookes tube, a type of discharge tube that emitted X-rays
Wilhelm Röntgen
Hand mit Ringen (Hand with Rings): print of Wilhelm Röntgen's first "medical" X-ray, of his wife's hand, taken on 22 December 1895 and presented to Ludwig Zehnder of the Physik Institut, University of Freiburg, on 1 January 1896
Taking an X-ray image with early Crookes tube apparatus, late 1800s. The Crookes tube is visible in center. The standing man is viewing his hand with a fluoroscope screen. The seated man is taking a radiograph of his hand by placing it on a photographic plate. No precautions against radiation exposure are taken; its hazards were not known at the time.
Surgical removal of a bullet whose location was diagnosed with X-rays (see inset) in 1897
Images by James Green, from "Sciagraphs of British Batrachians and Reptiles" (1897), featuring (from left) Rana esculenta (now Pelophylax lessonae), Lacerta vivipara (now Zootoca vivipara), and Lacerta agilis
1896 plaque published in "Nouvelle Iconographie de la Salpetrière", a medical journal. In the left a hand deformity, in the right same hand seen using radiography. The authors named the technique Röntgen photography.
A patient being examined with a thoracic fluoroscope in 1940, which displayed continuous moving images. This image was used to argue that radiation exposure during the X-ray procedure would be negligible.
Chandra's image of the galaxy cluster Abell 2125 reveals a complex of several massive multimillion-degree-Celsius gas clouds in the process of merging.
Phase-contrast X-ray image of spider
X-rays are part of the electromagnetic spectrum, with wavelengths shorter than UV light. Different applications use different parts of the X-ray spectrum.
Ionizing radiation hazard symbol
Attenuation length of X-rays in water showing the oxygen absorption edge at 540 eV, the energy−3 dependence of photoabsorption, as well as a leveling off at higher photon energies due to Compton scattering. The attenuation length is about four orders of magnitude longer for hard X-rays (right half) compared to soft X-rays (left half).
Spectrum of the X-rays emitted by an X-ray tube with a rhodium target, operated at 60 kV. The smooth, continuous curve is due to bremsstrahlung, and the spikes are characteristic K lines for rhodium atoms.
Patient undergoing an x-ray exam in a hospital radiology room.
A chest radiograph of a female, demonstrating a hiatal hernia
Plain radiograph of the right knee
Head CT scan (transverse plane) slice – a modern application of medical radiography
Abdominal radiograph of a pregnant woman, a procedure that should be performed only after proper assessment of benefit versus risk
Each dot, called a reflection, in this diffraction pattern forms from the constructive interference of scattered X-rays passing through a crystal. The data can be used to determine the crystalline structure.
Using X-ray for inspection and quality control: the differences in the structures of the die and bond wires reveal the left chip to be counterfeit.
X-ray fine art photography of needlefish by Peter Dazeley

He based it on the electromagnetic theory of light.

Levels of ozone at various altitudes (DU/km) and blocking of different bands of ultraviolet radiation: In essence, all UVC is blocked by diatomic oxygen (100–200 nm) or by ozone (triatomic oxygen) (200–280 nm) in the atmosphere. The ozone layer then blocks most UVB. Meanwhile, UVA is hardly affected by ozone, and most of it reaches the ground. UVA makes up almost all UV light that penetrates the Earth's atmosphere.

Ultraviolet

13 links

Levels of ozone at various altitudes (DU/km) and blocking of different bands of ultraviolet radiation: In essence, all UVC is blocked by diatomic oxygen (100–200 nm) or by ozone (triatomic oxygen) (200–280 nm) in the atmosphere. The ozone layer then blocks most UVB. Meanwhile, UVA is hardly affected by ozone, and most of it reaches the ground. UVA makes up almost all UV light that penetrates the Earth's atmosphere.
A 380 nanometer UV LED makes some common household items fluoresce.
Ultraviolet photons harm the DNA molecules of living organisms in different ways. In one common damage event, adjacent thymine bases bond with each other, instead of across the "ladder". This "thymine dimer" makes a bulge, and the distorted DNA molecule does not function properly.
Sunburn effect (as measured by the UV index) is the product of the sunlight spectrum (radiation intensity) and the erythemal action spectrum (skin sensitivity) across the range of UV wavelengths. Sunburn production per milliwatt of radiation intensity is increased by nearly a factor of 100 between the near UV‑B wavelengths of 315–295 nm
Demonstration of the effect of sunscreen. The man's face has sunscreen on his right side only. The left image is a regular photograph of his face; the right image is of reflected UV light. The side of the face with sunscreen is darker because the sunscreen absorbs the UV light.
Signs are often used to warn of the hazard of strong UV sources.
UV damaged polypropylene rope (left) and new rope (right)
IR spectrum showing carbonyl absorption due to UV degradation of polyethylene
A portrait taken using only UV light between the wavelengths of 335 and 365 nanometers.
Aurora at Jupiter's north pole as seen in ultraviolet light by the Hubble Space Telescope.
A bird appears on many Visa credit cards when they are held under a UV light source
After a training exercise involving fake body fluids, a healthcare worker's personal protective equipment is checked with ultraviolet light to find invisible drops of fluids. These fluids could contain deadly viruses or other contamination.
A collection of mineral samples brilliantly fluorescing at various wavelengths as seen while being irradiated by UV light.
Effects of UV on finished surfaces in 0, 20 and 43 hours.
A low-pressure mercury vapor discharge tube floods the inside of a hood with shortwave UV light when not in use, sterilizing microbiological contaminants from irradiated surfaces.
Entomologist using a UV light for collecting beetles in Chaco, Paraguay.

Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30 PHz) to 400 nm (750 THz), shorter than that of visible light, but longer than X-rays.

A ray of light being refracted in a plastic block

Refractive index

10 links

A ray of light being refracted in a plastic block
Refraction of a light ray
Thomas Young coined the term index of refraction.
Diamonds have a very high refractive index of 2.417.
A split-ring resonator array arranged to produce a negative index of refraction for microwaves
In optical mineralogy, thin sections are used to study rocks. The method is based on the distinct refractive indices of different minerals.
Light of different colors has slightly different refractive indices in water and therefore shows up at different positions in the rainbow.
In a prism, dispersion causes different colors to refract at different angles, splitting white light into a rainbow of colors.
The variation of refractive index with wavelength for various glasses. The shaded zone indicates the range of visible light.
The colors of a soap bubble are determined by the optical path length through the thin soap film in a phenomenon called thin-film interference.
Refraction of light at the interface between two media of different refractive indices, with n2 > n1. Since the phase velocity is lower in the second medium (v2 < v1), the angle of refraction θ2 is less than the angle of incidence θ1; that is, the ray in the higher-index medium is closer to the normal.
Total internal reflection can be seen at the air-water boundary.
The power of a magnifying glass is determined by the shape and refractive index of the lens.
The relation between the refractive index and the density of silicate and borosilicate glasses
A calcite crystal laid upon a paper with some letters showing double refraction
Birefringent materials can give rise to colors when placed between crossed polarizers. This is the basis for photoelasticity.
A gradient-index lens with a parabolic variation of refractive index (n) with radial distance (x). The lens focuses light in the same way as a conventional lens.
The principle of many refractometers
A handheld refractometer used to measure the sugar content of fruits
A differential interference contrast microscopy image of yeast cells

In optics, the refractive index ( refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.

☉

Sun

7 links

Star at the center of the Solar System.

Star at the center of the Solar System.

☉
Illustration of the Sun's structure, in false color for contrast
Illustration of a proton-proton reaction chain, from hydrogen forming deuterium, helium-3, and regular helium-4.
Illustration of different stars's internal structure, the Sun in the middle has an inner radiating zone and an outer convective zone.
High-resolution image of the Sun's surface taken by the Daniel K. Inouye Solar Telescope (DKIST)
During a total solar eclipse, the solar corona can be seen with the naked eye, during the brief period of totality.
The Sun's transition region taken by Hinode's Solar Optical Telescope
Sunlight and glare seen overlooking from the International Space Station
Once outside the Sun's surface, neutrinos and photons travel at the speed of light
Visible light photograph of sunspot
Measurements from 2005 of solar cycle variation during the previous 30 years
300x300px
The size of the current Sun (now in the main sequence) compared to its estimated size during its red-giant phase in the future
The Solar System, with sizes of the Sun and planets to scale. The terrestrial planets are on the right, the gas and ice giants are on the left.
The Trundholm sun chariot pulled by a horse is a sculpture believed to be illustrating an important part of Nordic Bronze Age mythology.
Sol, the Sun, from a 1550 edition of Guido Bonatti's Liber astronomiae.
False-color image taken in 2010 as seen in 30.4-nanometer ultraviolet light wavelength
A false-color of a coronal hole on the Sun forming a question mark (22 December 2017)
A false-color solar prominence erupts in August 2012, as captured by the Solar Dynamics Observatory
The Sun seen from Earth, with glare from the lenses. The eye also see glare when looked towards the Sun directly.
Sun and Immortal Birds Gold Ornament by ancient Shu people. The center is a sun pattern with twelve points around which four birds fly in the same counterclockwise direction, Shang dynasty

It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy mainly as light, ultraviolet, and infrared radiation.