A report on Light and Quantum

A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated.
The electromagnetic spectrum, with the visible portion highlighted
800px
Beam of sun light inside the cavity of Rocca ill'Abissu at Fondachelli-Fantina, Sicily
Due to refraction, the straw dipped in water appears bent and the ruler scale compressed when viewed from a shallow angle.
Hong Kong illuminated by colourful artificial lighting.
Pierre Gassendi.
Christiaan Huygens.
Thomas Young's sketch of a double-slit experiment showing diffraction. Young's experiments supported the theory that light consists of waves.
400x400px

For example, a photon is a single quantum of light (or of any other form of electromagnetic radiation).

- Quantum

Like all types of electromagnetic radiation, visible light propagates by massless elementary particles called photons that represents the quanta of electromagnetic field, and can be analyzed as both waves and particles.

- Light
A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated.

4 related topics with Alpha

Overall

Photons are emitted by a cyan laser beam outside, orange laser beam inside calcite and its fluorescence

Photon

2 links

Photons are emitted by a cyan laser beam outside, orange laser beam inside calcite and its fluorescence
Photoelectric effect: the emission of electrons from a metal plate caused by light quanta – photons.
The cone shows possible values of wave 4-vector of a photon. The "time" axis gives the angular frequency (rad⋅s−1) and the "space" axis represents the angular wavenumber (rad⋅m−1). Green and indigo represent left and right polarization
Thomas Young's double-slit experiment in 1801 showed that light can act as a wave, helping to invalidate early particle theories of light.
In 1900, Maxwell's theoretical model of light as oscillating electric and magnetic fields seemed complete. However, several observations could not be explained by any wave model of electromagnetic radiation, leading to the idea that light-energy was packaged into quanta described by . Later experiments showed that these light-quanta also carry momentum and, thus, can be considered particles: The photon concept was born, leading to a deeper understanding of the electric and magnetic fields themselves.
Up to 1923, most physicists were reluctant to accept that light itself was quantized. Instead, they tried to explain photon behaviour by quantizing only matter, as in the Bohr model of the hydrogen atom (shown here). Even though these semiclassical models were only a first approximation, they were accurate for simple systems and they led to quantum mechanics.
Photons in a Mach–Zehnder interferometer exhibit wave-like interference and particle-like detection at single-photon detectors.
Stimulated emission (in which photons "clone" themselves) was predicted by Einstein in his kinetic analysis, and led to the development of the laser. Einstein's derivation inspired further developments in the quantum treatment of light, which led to the statistical interpretation of quantum mechanics.
Different electromagnetic modes (such as those depicted here) can be treated as independent simple harmonic oscillators. A photon corresponds to a unit of energy E = hν in its electromagnetic mode.

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force.

400x400px

Electromagnetic radiation

2 links

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, propagating through space, carrying electromagnetic radiant energy.

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, propagating through space, carrying electromagnetic radiant energy.

400x400px
Shows the relative wavelengths of the electromagnetic waves of three different colours of light (blue, green, and red) with a distance scale in micrometers along the x-axis.
In electromagnetic radiation (such as microwaves from an antenna, shown here) the term "radiation" applies only to the parts of the electromagnetic field that radiate into infinite space and decrease in intensity by an inverse-square law of power, so that the total radiation energy that crosses through an imaginary spherical surface is the same, no matter how far away from the antenna the spherical surface is drawn. Electromagnetic radiation thus includes the far field part of the electromagnetic field around a transmitter. A part of the "near-field" close to the transmitter, forms part of the changing electromagnetic field, but does not count as electromagnetic radiation.
Electromagnetic waves can be imagined as a self-propagating transverse oscillating wave of electric and magnetic fields. This 3D animation shows a plane linearly polarized wave propagating from left to right. The electric and magnetic fields in such a wave are in-phase with each other, reaching minima and maxima together.
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation.
James Clerk Maxwell
Electromagnetic spectrum with visible light highlighted
Rough plot of Earth's atmospheric absorption and scattering (or opacity) of various wavelengths of electromagnetic radiation

It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.

In quantum mechanics, an alternate way of viewing EMR is that it consists of photons, uncharged elementary particles with zero rest mass which are the quanta of the electromagnetic field, responsible for all electromagnetic interactions.

The emission of electrons from a metal plate caused by light quanta – photons.

Photoelectric effect

2 links

The emission of electrons from a metal plate caused by light quanta – photons.
Schematic of the experiment to demonstrate the photoelectric effect. Filtered, monochromatic light of a certain wavelength strikes the emitting electrode (E) inside a vacuum tube. The collector electrode (C) is biased to a voltage VC that can be set to attract the emitted electrons, when positive, or prevent any of them from reaching the collector when negative.
Diagram of the maximum kinetic energy as a function of the frequency of light on zinc.
The gold leaf electroscope to demonstrate the photoelectric effect. When the electroscope is negatively charged, there is an excess of electrons and the leaves are separated. If short wavelength, high-frequency light (such as ultraviolet light obtained from an arc lamp, or by burning magnesium, or by using an induction coil between zinc or cadmium terminals to produce sparking) shines on the cap, the electroscope discharges, and the leaves fall limp. If, however, the frequency of the light waves is below the threshold value for the cap, the leaves will not discharge, no matter how long one shines the light at the cap.
Photomultiplier
Angle-resolved photoemission spectroscopy (ARPES) experiment. Helium discharge lamp shines ultraviolet light onto the sample in ultra-high vacuum. Hemispherical electron analyzer measures the distribution of ejected electrons with respect to energy and momentum.

The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material.

Albert Einstein's mathematical description of how the photoelectric effect was caused by absorption of quanta of light was in one of his Annus Mirabilis papers, named "On a Heuristic Viewpoint Concerning the Production and Transformation of Light".

Various examples of physical phenomena

Physics

0 links

Natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force.

Natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force.

Various examples of physical phenomena
Ancient Egyptian astronomy is evident in monuments like the ceiling of Senemut's tomb from the Eighteenth Dynasty of Egypt.
Ibn al-Haytham (c. 965–c. 1040), Book of Optics Book I, [6.85], [6.86]. Book II, [3.80] describes his camera obscura experiments.
The basic way a pinhole camera works
Galileo Galilei showed a modern appreciation for the proper relationship between mathematics, theoretical physics, and experimental physics.
Sir Isaac Newton (1643–1727), whose laws of motion and universal gravitation were major milestones in classical physics
Max Planck (1858–1947), the originator of the theory of quantum mechanics
Albert Einstein (1879–1955), whose work on the photoelectric effect and the theory of relativity led to a revolution in 20th century physics
The basic domains of physics
Solvay Conference of 1927, with prominent physicists such as Albert Einstein, Werner Heisenberg, Max Planck, Hendrik Lorentz, Niels Bohr, Marie Curie, Erwin Schrödinger and Paul Dirac
This parabola-shaped lava flow illustrates the application of mathematics in physics—in this case, Galileo's law of falling bodies.
Mathematics and ontology are used in physics. Physics is used in chemistry and cosmology.
The distinction between mathematics and physics is clear-cut, but not always obvious, especially in mathematical physics.
Classical physics implemented in an acoustic engineering model of sound reflecting from an acoustic diffuser
Archimedes' screw, a simple machine for lifting
Experiment using a laser
The astronaut and Earth are both in free fall.
Lightning is an electric current.
Physics involves modeling the natural world with theory, usually quantitative. Here, the path of a particle is modeled with the mathematics of calculus to explain its behavior: the purview of the branch of physics known as mechanics.
A simulated event in the CMS detector of the Large Hadron Collider, featuring a possible appearance of the Higgs boson.
Velocity-distribution data of a gas of rubidium atoms, confirming the discovery of a new phase of matter, the Bose–Einstein condensate
The deepest visible-light image of the universe, the Hubble Ultra-Deep Field
Feynman diagram signed by R. P. Feynman.
A typical phenomenon described by physics: a magnet levitating above a superconductor demonstrates the Meissner effect.

Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light.

Quantum