A report on OrganelleMitochondrion and Organism

(A) Electron micrograph of Halothiobacillus neapolitanus cells, arrows highlight carboxysomes. (B) Image of intact carboxysomes isolated from H. neapolitanus. Scale bars are 100 nm.
Two mitochondria from mammalian lung tissue displaying their matrix and membranes as shown by electron microscopy
The bacterium Escherichia coli (E. coli), is a single-celled prokaryote
Structure of Candidatus Brocadia anammoxidans, showing an anammoxosome and intracytoplasmic membrane
Simplified structure of a mitochondrion.
An amoeba is a single-celled eukaryote
Cross-sectional image of cristae in a rat liver mitochondrion to demonstrate the likely 3D structure and relationship to the inner membrane
Polypore fungi and angiosperm trees are large multicellular eukaryotes.
Electron transport chain in the mitochondrial intermembrane space
Precambrian stromatolites in the Siyeh Formation, Glacier National Park. In 2002, a paper in the scientific journal Nature suggested that these 3.5 Gya (billion years old) geological formations contain fossilized cyanobacteria microbes. This suggests they are evidence of one of the earliest known life forms on Earth.
Transmission electron micrograph of a chondrocyte, stained for calcium, showing its nucleus (N) and mitochondria (M).
LUCA may have used the Wood–Ljungdahl or reductive acetyl–CoA pathway to fix carbon.
Typical mitochondrial network (green) in two human cells (HeLa cells)
Model of the yeast multimeric tethering complex, ERMES
Evolution of MROs
The circular 16,569 bp human mitochondrial genome encoding 37 genes, i.e., 28 on the H-strand and 9 on the L-strand.

A mitochondrion is a double-membrane-bound organelle found in most eukaryotic organisms.

- Mitochondrion

They include structures that make up the endomembrane system (such as the nuclear envelope, endoplasmic reticulum, and Golgi apparatus), and other structures such as mitochondria and plastids.

- Organelle

Eukaryotic organisms are characterized by the presence of a membrane-bound cell nucleus and contain additional membrane-bound compartments called organelles (such as mitochondria in animals and plants and plastids in plants and algae, all generally considered to be derived from endosymbiotic bacteria).

- Organism

In biology organs are defined as confined functional units within an organism.

- Organelle

The number of mitochondria in a cell can vary widely by organism, tissue, and cell type.

- Mitochondrion
(A) Electron micrograph of Halothiobacillus neapolitanus cells, arrows highlight carboxysomes. (B) Image of intact carboxysomes isolated from H. neapolitanus. Scale bars are 100 nm.

3 related topics with Alpha

Overall

Eukaryote

2 links

The endomembrane system and its components
Simplified structure of a mitochondrion
Longitudinal section through the flagellum of Chlamydomonas reinhardtii
Structure of a typical animal cell
Structure of a typical plant cell
Fungal Hyphae cells: 1 – hyphal wall, 2 – septum, 3 – mitochondrion, 4 – vacuole, 5 – ergosterol crystal, 6 – ribosome, 7 – nucleus, 8 – endoplasmic reticulum, 9 – lipid body, 10 – plasma membrane, 11 – spitzenkörper, 12 – Golgi apparatus
This diagram illustrates the twofold cost of sex. If each individual were to contribute the same number of offspring (two), (a) the sexual population remains the same size each generation, where the (b) asexual population doubles in size each generation.
Phylogenetic and symbiogenetic tree of living organisms, showing a view of the origins of eukaryotes and prokaryotes
One hypothesis of eukaryotic relationships – the Opisthokonta group includes both animals (Metazoa) and fungi, plants (Plantae) are placed in Archaeplastida.
A pie chart of described eukaryote species (except for Excavata), together with a tree showing possible relationships between the groups
The three-domains tree and the Eocyte hypothesis
Phylogenetic tree showing a possible relationship between the eukaryotes and other forms of life; eukaryotes are colored red, archaea green and bacteria blue
Eocyte tree.
Diagram of the origin of life with the Eukaryotes appearing early, not derived from Prokaryotes, as proposed by Richard Egel in 2012. This view implies that the UCA was relatively large and complex.

Eukaryotes are organisms whose cells have a nucleus enclosed within a nuclear envelope.

Eukaryotic cells typically contain other membrane-bound organelles such as mitochondria and Golgi apparatus; and chloroplasts can be found in plants and algae.

This fluid lipid bilayer cross section is made up entirely of phosphatidylcholine.

Lipid bilayer

2 links

Thin polar membrane made of two layers of lipid molecules.

Thin polar membrane made of two layers of lipid molecules.

This fluid lipid bilayer cross section is made up entirely of phosphatidylcholine.
The three main structures phospholipids form in solution; the liposome (a closed bilayer), the micelle and the bilayer.
Schematic cross sectional profile of a typical lipid bilayer. There are three distinct regions: the fully hydrated headgroups, the fully dehydrated alkane core and a short intermediate region with partial hydration. Although the head groups are neutral, they have significant dipole moments that influence the molecular arrangement.
TEM image of a bacterium. The furry appearance on the outside is due to a coat of long-chain sugars attached to the cell membrane. This coating helps trap water to prevent the bacterium from becoming dehydrated.
Diagram showing the effect of unsaturated lipids on a bilayer. The lipids with an unsaturated tail (blue) disrupt the packing of those with only saturated tails (black). The resulting bilayer has more free space and is, as a consequence, more permeable to water and other small molecules.
Illustration of a GPCR signaling protein. In response to a molecule such as a hormone binding to the exterior domain (blue) the GPCR changes shape and catalyzes a chemical reaction on the interior domain (red). The gray feature is the surrounding bilayer.
Transmission Electron Microscope (TEM) image of a lipid vesicle. The two dark bands around the edge are the two leaflets of the bilayer. Historically, similar images confirmed that the cell membrane is a bilayer
Human red blood cells viewed through a fluorescence microscope. The cell membrane has been stained with a fluorescent dye. Scale bar is 20μm.
3d-Adapted AFM images showing formation of transmembrane pores (holes) in supported lipid bilayer
Illustration of a typical AFM scan of a supported lipid bilayer. The pits are defects in the bilayer, exposing the smooth surface of the substrate underneath.
Structure of a potassium ion channel. The alpha helices penetrate the bilayer (boundaries indicated by red and blue lines), opening a hole through which potassium ions can flow
Schematic illustration of pinocytosis, a type of endocytosis
Exocytosis of outer membrane vesicles (MV) liberated from inflated periplasmic pockets (p) on surface of human Salmonella 3,10:r:- pathogens docking on plasma membrane of macrophage cells (M) in chicken ileum, for host-pathogen signaling in vivo.
Schematic showing two possible conformations of the lipids at the edge of a pore. In the top image the lipids have not rearranged, so the pore wall is hydrophobic. In the bottom image some of the lipid heads have bent over, so the pore wall is hydrophilic.
Illustration of lipid vesicles fusing showing two possible outcomes: hemifusion and full fusion. In hemifusion, only the outer bilayer leaflets mix. In full fusion both leaflets as well as the internal contents mix.
Schematic illustration of the process of fusion through stalk formation.
Diagram of the action of SNARE proteins docking a vesicle for exocytosis. Complementary versions of the protein on the vesicle and the target membrane bind and wrap around each other, drawing the two bilayers close together in the process.

The cell membranes of almost all organisms and many viruses are made of a lipid bilayer, as are the nuclear membrane surrounding the cell nucleus, and membranes of the membrane-bound organelles in the cell.

In contrast, eukaryotes have a range of organelles including the nucleus, mitochondria, lysosomes and endoplasmic reticulum.

Onion (Allium cepa) root cells in different phases of the cell cycle (drawn by E. B. Wilson, 1900)

Cell (biology)

2 links

Basic structural and functional unit of life forms.

Basic structural and functional unit of life forms.

Onion (Allium cepa) root cells in different phases of the cell cycle (drawn by E. B. Wilson, 1900)
Structure of a typical prokaryotic cell
Structure of a typical animal cell
Structure of a typical plant cell
Detailed diagram of lipid bilayer of cell membrane
A fluorescent image of an endothelial cell. Nuclei are stained blue, mitochondria are stained red, and microfilaments are stained green.
Deoxyribonucleic acid (DNA)
Human cancer cells, specifically HeLa cells, with DNA stained blue. The central and rightmost cell are in interphase, so their DNA is diffuse and the entire nuclei are labelled. The cell on the left is going through mitosis and its chromosomes have condensed.
Diagram of the endomembrane system
Prokaryotes divide by binary fission, while eukaryotes divide by mitosis or meiosis.
An outline of the catabolism of proteins, carbohydrates and fats
An overview of protein synthesis.
Within the nucleus of the cell (light blue), genes (DNA, dark blue) are transcribed into RNA. This RNA is then subject to post-transcriptional modification and control, resulting in a mature mRNA (red) that is then transported out of the nucleus and into the cytoplasm (peach), where it undergoes translation into a protein. mRNA is translated by ribosomes (purple) that match the three-base codons of the mRNA to the three-base anti-codons of the appropriate tRNA. Newly synthesized proteins (black) are often further modified, such as by binding to an effector molecule (orange), to become fully active.
Staining of a Caenorhabditis elegans highlights the nuclei of its cells.
Stromatolites are left behind by cyanobacteria, also called blue-green algae. They are the oldest known fossils of life on Earth. This one-billion-year-old fossil is from Glacier National Park in the United States.
Robert Hooke's drawing of cells in cork, 1665

They are simpler and smaller than eukaryotic cells, and lack a nucleus, and other membrane-bound organelles.

The eukaryotic DNA is organized in one or more linear molecules, called chromosomes, which are associated with histone proteins. All chromosomal DNA is stored in the cell nucleus, separated from the cytoplasm by a membrane. Some eukaryotic organelles such as mitochondria also contain some DNA.

Multicellular organisms are organisms that consist of more than one cell, in contrast to single-celled organisms.