Mitochondrion

Two mitochondria from mammalian lung tissue displaying their matrix and membranes as shown by electron microscopy
Simplified structure of a mitochondrion.
Cross-sectional image of cristae in a rat liver mitochondrion to demonstrate the likely 3D structure and relationship to the inner membrane
Electron transport chain in the mitochondrial intermembrane space
Transmission electron micrograph of a chondrocyte, stained for calcium, showing its nucleus (N) and mitochondria (M).
Typical mitochondrial network (green) in two human cells (HeLa cells)
Model of the yeast multimeric tethering complex, ERMES
Evolution of MROs
The circular 16,569 bp human mitochondrial genome encoding 37 genes, i.e., 28 on the H-strand and 9 on the L-strand.

Double-membrane-bound organelle found in most eukaryotic organisms.

- Mitochondrion
Two mitochondria from mammalian lung tissue displaying their matrix and membranes as shown by electron microscopy

158 related topics

Alpha

Eukaryote

Eukaryotes are organisms whose cells have a nucleus enclosed within a nuclear envelope.

Eukaryotes are organisms whose cells have a nucleus enclosed within a nuclear envelope.

The endomembrane system and its components
Simplified structure of a mitochondrion
Longitudinal section through the flagellum of Chlamydomonas reinhardtii
Structure of a typical animal cell
Structure of a typical plant cell
Fungal Hyphae cells: 1 – hyphal wall, 2 – septum, 3 – mitochondrion, 4 – vacuole, 5 – ergosterol crystal, 6 – ribosome, 7 – nucleus, 8 – endoplasmic reticulum, 9 – lipid body, 10 – plasma membrane, 11 – spitzenkörper, 12 – Golgi apparatus
This diagram illustrates the twofold cost of sex. If each individual were to contribute the same number of offspring (two), (a) the sexual population remains the same size each generation, where the (b) asexual population doubles in size each generation.
Phylogenetic and symbiogenetic tree of living organisms, showing a view of the origins of eukaryotes and prokaryotes
One hypothesis of eukaryotic relationships – the Opisthokonta group includes both animals (Metazoa) and fungi, plants (Plantae) are placed in Archaeplastida.
A pie chart of described eukaryote species (except for Excavata), together with a tree showing possible relationships between the groups
The three-domains tree and the Eocyte hypothesis
Phylogenetic tree showing a possible relationship between the eukaryotes and other forms of life; eukaryotes are colored red, archaea green and bacteria blue
Eocyte tree.
Diagram of the origin of life with the Eukaryotes appearing early, not derived from Prokaryotes, as proposed by Richard Egel in 2012. This view implies that the UCA was relatively large and complex.

Eukaryotic cells typically contain other membrane-bound organelles such as mitochondria and Golgi apparatus; and chloroplasts can be found in plants and algae.

The electron transport chain in the cell is the site of oxidative phosphorylation. The NADH and succinate generated in the citric acid cycle are oxidized, releasing the energy of O2 to power the ATP synthase.

Oxidative phosphorylation

Metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP).

Metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP).

The electron transport chain in the cell is the site of oxidative phosphorylation. The NADH and succinate generated in the citric acid cycle are oxidized, releasing the energy of O2 to power the ATP synthase.
Reduction of coenzyme Q from its ubiquinone form (Q) to the reduced ubiquinol form (QH2).
Complex I or NADH-Q oxidoreductase. The abbreviations are discussed in the text. In all diagrams of respiratory complexes in this article, the matrix is at the bottom, with the intermembrane space above.
Complex II: Succinate-Q oxidoreductase.
The two electron transfer steps in complex III: Q-cytochrome c oxidoreductase. After each step, Q (in the upper part of the figure) leaves the enzyme.
Complex IV: cytochrome c oxidase.
Mechanism of ATP synthase. ATP is shown in red, ADP and phosphate in pink and the rotating γ subunit in black.

In eukaryotes, this takes place inside mitochondria.

Onion (Allium cepa) root cells in different phases of the cell cycle (drawn by E. B. Wilson, 1900)

Cell (biology)

Basic structural and functional unit of life forms.

Basic structural and functional unit of life forms.

Onion (Allium cepa) root cells in different phases of the cell cycle (drawn by E. B. Wilson, 1900)
Structure of a typical prokaryotic cell
Structure of a typical animal cell
Structure of a typical plant cell
Detailed diagram of lipid bilayer of cell membrane
A fluorescent image of an endothelial cell. Nuclei are stained blue, mitochondria are stained red, and microfilaments are stained green.
Deoxyribonucleic acid (DNA)
Human cancer cells, specifically HeLa cells, with DNA stained blue. The central and rightmost cell are in interphase, so their DNA is diffuse and the entire nuclei are labelled. The cell on the left is going through mitosis and its chromosomes have condensed.
Diagram of the endomembrane system
Prokaryotes divide by binary fission, while eukaryotes divide by mitosis or meiosis.
An outline of the catabolism of proteins, carbohydrates and fats
An overview of protein synthesis.
Within the nucleus of the cell (light blue), genes (DNA, dark blue) are transcribed into RNA. This RNA is then subject to post-transcriptional modification and control, resulting in a mature mRNA (red) that is then transported out of the nucleus and into the cytoplasm (peach), where it undergoes translation into a protein. mRNA is translated by ribosomes (purple) that match the three-base codons of the mRNA to the three-base anti-codons of the appropriate tRNA. Newly synthesized proteins (black) are often further modified, such as by binding to an effector molecule (orange), to become fully active.
Staining of a Caenorhabditis elegans highlights the nuclei of its cells.
Stromatolites are left behind by cyanobacteria, also called blue-green algae. They are the oldest known fossils of life on Earth. This one-billion-year-old fossil is from Glacier National Park in the United States.
Robert Hooke's drawing of cells in cork, 1665

The eukaryotic DNA is organized in one or more linear molecules, called chromosomes, which are associated with histone proteins. All chromosomal DNA is stored in the cell nucleus, separated from the cytoplasm by a membrane. Some eukaryotic organelles such as mitochondria also contain some DNA.

Overview of the citric acid cycle

Citric acid cycle

Series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins.

Series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins.

Overview of the citric acid cycle
Structural diagram of acetyl-CoA: The portion in blue, on the left, is the acetyl group; the portion in black is coenzyme A.

In eukaryotic cells, the citric acid cycle occurs in the matrix of the mitochondrion.

Interactive animation of the structure of ATP

Adenosine triphosphate

Organic compound and hydrotrope that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis.

Organic compound and hydrotrope that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis.

Interactive animation of the structure of ATP
The cycles of synthesis and degradation of ATP; 2 and 1 represent input and output of energy, respectively.
This image shows a 360-degree rotation of a single, gas-phase magnesium-ATP chelate with a charge of −2. The anion was optimized at the UB3LYP/6-311++G(d,p) theoretical level and the atomic connectivity modified by the human optimizer to reflect the probable electronic structure.
An example of the Rossmann fold, a structural domain of a decarboxylase enzyme from the bacterium Staphylococcus epidermidis with a bound flavin mononucleotide cofactor.

ATP production by a non-photosynthetic aerobic eukaryote occurs mainly in the mitochondria, which comprise nearly 25% of the volume of a typical cell.

The electron transport chain in the mitochondrion is the site of oxidative phosphorylation in eukaryotes. The NADH and succinate generated in the citric acid cycle are oxidized, which releases the energy of oxygen to power ATP synthase.

Electron transport chain

Series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H+ ions) across a membrane.

Series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H+ ions) across a membrane.

The electron transport chain in the mitochondrion is the site of oxidative phosphorylation in eukaryotes. The NADH and succinate generated in the citric acid cycle are oxidized, which releases the energy of oxygen to power ATP synthase.
Photosynthetic electron transport chain of the thylakoid membrane.
Depiction of ATP synthase, the site of oxidative phosphorylation to generate ATP.

Most eukaryotic cells have mitochondria, which produce ATP from reactions of oxygen with products of the citric acid cycle, fatty acid metabolism, and amino acid metabolism.

Bacteria

Bacteria (singular bacterium, common noun bacteria) are ubiquitous, mostly free-living organisms often consisting of one biological cell.

Bacteria (singular bacterium, common noun bacteria) are ubiquitous, mostly free-living organisms often consisting of one biological cell.

Rod-shaped Bacillus subtilis
Phylogenetic tree of Bacteria, Archaea and Eucarya. The vertical line at bottom represents the last universal common ancestor.
Bacteria display many cell morphologies and arrangements
The range of sizes shown by prokaryotes (Bacteria), relative to those of other organisms and biomolecules.
Structure and contents of a typical Gram-positive bacterial cell (seen by the fact that only one cell membrane is present).
An electron micrograph of Halothiobacillus neapolitanus cells with carboxysomes inside, with arrows highlighting visible carboxysomes. Scale bars indicate 100 nm.
Helicobacter pylori electron micrograph, showing multiple flagella on the cell surface
Bacillus anthracis (stained purple) growing in cerebrospinal fluid
Many bacteria reproduce through binary fission, which is compared to mitosis and meiosis in this image.
A culture of ''Salmonella
A colony of Escherichia coli
Helium ion microscopy image showing T4 phage infecting E. coli. Some of the attached phage have contracted tails indicating that they have injected their DNA into the host. The bacterial cells are ~ 0.5 µm wide.
Transmission electron micrograph of Desulfovibrio vulgaris showing a single flagellum at one end of the cell. Scale bar is 0.5 micrometers long.
The different arrangements of bacterial flagella: A-Monotrichous; B-Lophotrichous; C-Amphitrichous; D-Peritrichous
Streptococcus mutans visualised with a Gram stain.
Phylogenetic tree showing the diversity of bacteria, compared to other organisms. Here bacteria are represented by three main supergroups: the CPR ultramicrobacterias, Terrabacteria and Gracilicutes according to recent genomic analyzes (2019).
Overview of bacterial infections and main species involved.
Colour-enhanced scanning electron micrograph showing Salmonella typhimurium (red) invading cultured human cells
In bacterial vaginosis, beneficial bacteria in the vagina (top) are displaced by pathogens (bottom). Gram stain.
Antonie van Leeuwenhoek, the first microbiologist and the first person to observe bacteria using a microscope.

This involved the engulfment by proto-eukaryotic cells of alphaproteobacterial symbionts to form either mitochondria or hydrogenosomes, which are still found in all known Eukarya (sometimes in highly reduced form, e.g. in ancient "amitochondrial" protozoa).

Summary of aerobic respiration

Glycolysis

Metabolic pathway that converts glucose , into pyruvic acid (CH3COCO2H).

Metabolic pathway that converts glucose , into pyruvic acid (CH3COCO2H).

Summary of aerobic respiration
Summary of the 10 reactions of the glycolysis pathway
Glycolysis pathway overview.
Eduard Buchner. Discovered cell-free fermentation.
Otto Meyerhof. One of the main scientists involved in completing the puzzle of glycolysis
Yeast hexokinase B
Bacillus stearothermophilus phosphofructokinase
Yeast pyruvate kinase

When glucose has been converted into G6P by hexokinase or glucokinase, it can either be converted to glucose-1-phosphate (G1P) for conversion to glycogen, or it is alternatively converted by glycolysis to pyruvate, which enters the mitochondrion where it is converted into acetyl-CoA and then into citrate.

HeLa cells stained for nuclear DNA with the blue fluorescent Hoechst dye. The central and rightmost cell are in interphase, thus their entire nuclei are labeled. On the left, a cell is going through mitosis and its DNA has condensed.

Cell nucleus

In cell biology, the nucleus (pl.

In cell biology, the nucleus (pl.

HeLa cells stained for nuclear DNA with the blue fluorescent Hoechst dye. The central and rightmost cell are in interphase, thus their entire nuclei are labeled. On the left, a cell is going through mitosis and its DNA has condensed.
Diagram of the nucleus showing the ribosome-studded outer nuclear membrane, nuclear pores, DNA (complexed as chromatin), and the nucleolus.
A cross section of a nuclear pore on the surface of the nuclear envelope (1). Other diagram labels show (2) the outer ring, (3) spokes, (4) basket, and (5) filaments.
A mouse fibroblast nucleus in which DNA is stained blue. The distinct chromosome territories of chromosome 2 (red) and chromosome 9 (green) are stained with fluorescent in situ hybridization.
An electron micrograph of a cell nucleus, showing the darkly stained nucleolus
A generic transcription factory during transcription, highlighting the possibility of transcribing more than one gene at a time. The diagram includes 8 RNA polymerases however the number can vary depending on cell type. The image also includes transcription factors and a porous, protein core.
Macromolecules, such as RNA and proteins, are actively transported across the nuclear membrane in a process called the Ran-GTP nuclear transport cycle.
An image of a newt lung cell stained with fluorescent dyes during metaphase. The mitotic spindle can be seen, stained green, attached to the two sets of chromosomes, stained light blue. All chromosomes but one are already at the metaphase plate.
Human red blood cells, like those of other mammals, lack nuclei. This occurs as a normal part of the cells' development.
Oldest known depiction of cells and their nuclei by Antonie van Leeuwenhoek, 1719
Drawing of a Chironomus salivary gland cell published by Walther Flemming in 1882. The nucleus contains polytene chromosomes.

A small fraction of the cell's genes are located instead in the mitochondria.

Typical eukaryotic cell

Cellular respiration

Set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into adenosine triphosphate , and then release waste products.

Set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into adenosine triphosphate , and then release waste products.

Typical eukaryotic cell
Out of the cytoplasm it goes into the Krebs cycle with the acetyl CoA. It then mixes with CO2 and makes 2 ATP, NADH, and FADH. From there the NADH and FADH go into the NADH reductase, which produces the enzyme. The NADH pulls the enzyme's electrons to send through the electron transport chain. The electron transport chain pulls H+ ions through the chain. From the electron transport chain, the released hydrogen ions make ADP for an result of 32 ATP. O2 provides most of the energy for the process and combines with protons and the electrons to make water. Lastly, ATP leaves through the ATP channel and out of the mitochondria.
Stoichiometry of aerobic respiration and most known fermentation types in eucaryotic cell. Numbers in circles indicate counts of carbon atoms in molecules, C6 is glucose C6H12O6, C1 carbon dioxide CO2. Mitochondrial outer membrane is omitted.

Although carbohydrates, fats, and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate breakdown in glycolysis, and requires pyruvate to the mitochondria in order to be fully oxidized by the citric acid cycle.