A report on Nucleotide

This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a <u title="Nucleotide">Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a <u title="Deoxyadenosine monophosphate" href="deoxyadenosine monophosphate">nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.
Showing the arrangement of nucleotides within the structure of nucleic acids: At lower left, a monophosphate nucleotide; its nitrogenous base represents one side of a base-pair. At the upper right, four nucleotides form two base-pairs: thymine and adenine (connected by double hydrogen bonds) and guanine and cytosine (connected by triple hydrogen bonds). The individual nucleotide monomers are chain-joined at their sugar and phosphate molecules, forming two 'backbones' (a double helix) of nucleic acid, shown at upper left.
Structural elements of three nucleo tides —where one-, two- or three-phosphates are attached to the nucleo side (in yellow, blue, green) at center: 1st, the nucleotide termed as a nucleoside mono phosphate is formed by adding a phosphate (in red); 2nd, adding a second phosphate forms a nucleoside di phosphate; 3rd, adding a third phosphate results in a nucleoside tri phosphate. + The nitrogenous base (nucleobase) is indicated by "Base" and "glycosidic bond" (sugar bond). All five primary, or canonical, bases—the purines and pyrimidines—are sketched at right (in blue).
The synthesis of UMP. The color scheme is as follows: enzymes, <span style="color: rgb(219,155,36);">coenzymes, <span style="color: rgb(151,149,45);">substrate names , <span style="color: rgb(128,0,0);">inorganic molecules
The synthesis of IMP. The color scheme is as follows: enzymes, <span style="color: rgb(219,155,36);">coenzymes, <span style="color: rgb(151,149,45);">substrate names , <span style="color: rgb(227,13,196);">metal ions , <span style="color: rgb(128,0,0);">inorganic molecules

Nucleotides are organic molecules consisting of a nucleoside and a phosphate.

- Nucleotide
This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a <u title="Nucleotide">Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a <u title="Deoxyadenosine monophosphate" href="deoxyadenosine monophosphate">nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.

59 related topics with Alpha

Overall

The structure of the DNA double helix. The atoms in the structure are colour-coded by element and the detailed structures of two base pairs are shown in the bottom right.

DNA

26 links

Polymer composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses.

Polymer composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses.

The structure of the DNA double helix. The atoms in the structure are colour-coded by element and the detailed structures of two base pairs are shown in the bottom right.
Chemical structure of DNA; hydrogen bonds shown as dotted lines. Each end of the double helix has an exposed 5' phosphate on one strand and an exposed 3' hydroxyl group (—OH) on the other.
A section of DNA. The bases lie horizontally between the two spiraling strands ([[:File:DNA orbit animated.gif|animated version]]).
DNA major and minor grooves. The latter is a binding site for the Hoechst stain dye 33258.
From left to right, the structures of A, B and Z DNA
DNA quadruplex formed by telomere repeats. The looped conformation of the DNA backbone is very different from the typical DNA helix. The green spheres in the center represent potassium ions.
A covalent adduct between a metabolically activated form of benzo[a]pyrene, the major mutagen in tobacco smoke, and DNA
Location of eukaryote nuclear DNA within the chromosomes
T7 RNA polymerase (blue) producing an mRNA (green) from a DNA template (orange)
DNA replication: The double helix is unwound by a helicase and topo&shy;iso&shy;merase. Next, one DNA polymerase produces the leading strand copy. Another DNA polymerase binds to the lagging strand. This enzyme makes discontinuous segments (called Okazaki fragments) before DNA ligase joins them together.
Interaction of DNA (in orange) with histones (in blue). These proteins' basic amino acids bind to the acidic phosphate groups on DNA.
The lambda repressor helix-turn-helix transcription factor bound to its DNA target
The restriction enzyme EcoRV (green) in a complex with its substrate DNA
Recombination involves the breaking and rejoining of two chromosomes (M and F) to produce two rearranged chromosomes (C1 and C2).
The DNA structure at left (schematic shown) will self-assemble into the structure visualized by atomic force microscopy at right. DNA nanotechnology is the field that seeks to design nanoscale structures using the molecular recognition properties of DNA molecules.
Maclyn McCarty (left) shakes hands with Francis Crick and James Watson, co-originators of the double-helix model.
Pencil sketch of the DNA double helix by Francis Crick in 1953
A blue plaque outside The Eagle pub commemorating Crick and Watson
Impure DNA extracted from an orange

The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides.

A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). This is a single strand of RNA that folds back upon itself.

RNA

15 links

Polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes.

Polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes.

A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). This is a single strand of RNA that folds back upon itself.
Three-dimensional representation of the 50S ribosomal subunit. Ribosomal RNA is in ochre, proteins in blue. The active site is a small segment of rRNA, indicated in red.
Watson-Crick base pairs in a siRNA (hydrogen atoms are not shown)
Structure of a fragment of an RNA, showing a guanosyl subunit.
Secondary structure of a telomerase RNA.
Structure of a hammerhead ribozyme, a ribozyme that cuts RNA
Uridine to pseudouridine is a common RNA modification.
Double-stranded RNA
Robert W. Holley, left, poses with his research team.

Like DNA, RNA is assembled as a chain of nucleotides, but unlike DNA, RNA is found in nature as a single strand folded onto itself, rather than a paired double strand.

Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red.

Nucleobase

13 links

Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red.
Purine nucleobases are fused-ring molecules.
Pyrimidine nucleobases are simple ring molecules.
Chemical structure of DNA, showing four nucleobase pairs produced by eight nucleotides: adenine (A) is joined to thymine (T), and guanine (G) is joined to cytosine (C). + This structure also shows the directionality of each of the two phosphate-deoxyribose backbones, or strands. The 5' to 3' (read "5 prime to 3 prime") directions are: down the strand on the left, and up the strand on the right. The strands twist around each other to form a double helix structure.

Nucleobases, also known as nitrogenous bases or often simply bases, are nitrogen-containing biological compounds that form nucleosides, which, in turn, are components of nucleotides, with all of these monomers constituting the basic building blocks of nucleic acids.

Nucleic acids RNA (left) and DNA (right).

Nucleic acid

12 links

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life.

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life.

Nucleic acids RNA (left) and DNA (right).
The Swiss scientist Friedrich Miescher discovered nucleic acid first naming it as nuclein, in 1868. Later, he raised the idea that it could be involved in heredity.

They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base.

Schematic showing the structure of nucleoside triphosphates. Nucleosides consist of a 5-carbon sugar (pentose) connected to a nitrogenous base through a 1' glycosidic bond. Nucleotides are nucleosides with a variable number of phosphate groups connected to the 5' carbon. Nucleoside triphosphates are a specific type of nucleotide. This figure also shows the five common nitrogenous bases found in DNA and RNA on the right.

Nucleoside triphosphate

9 links

Molecule containing a nitrogenous base bound to a 5-carbon sugar , with three phosphate groups bound to the sugar.

Molecule containing a nitrogenous base bound to a 5-carbon sugar , with three phosphate groups bound to the sugar.

Schematic showing the structure of nucleoside triphosphates. Nucleosides consist of a 5-carbon sugar (pentose) connected to a nitrogenous base through a 1' glycosidic bond. Nucleotides are nucleosides with a variable number of phosphate groups connected to the 5' carbon. Nucleoside triphosphates are a specific type of nucleotide. This figure also shows the five common nitrogenous bases found in DNA and RNA on the right.
In nucleic acid synthesis, the 3’ OH of a growing chain of nucleotides attacks the α-phosphate on the next NTP to be incorporated (blue), resulting in a phosphodiester linkage and the release of pyrophosphate (PPi). This figure shows DNA synthesis, but RNA synthesis occurs through the same mechanism.
The energy released during hydrolysis of adenosine tripshophate (ATP), shown here, is frequently coupled with energetically unfavourable cellular reactions.
Binding of a ligand to a G protein-coupled receptor allows GTP to bind the G protein. This causes the alpha subunit to leave and act as a downstream effector.

It is an example of a nucleotide.

A representation of the 3D structure of the protein myoglobin showing turquoise α-helices. This protein was the first to have its structure solved by X-ray crystallography. Toward the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).

Protein

13 links

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues.

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues.

A representation of the 3D structure of the protein myoglobin showing turquoise α-helices. This protein was the first to have its structure solved by X-ray crystallography. Toward the right-center among the coils, a prosthetic group called a heme group (shown in gray) with a bound oxygen molecule (red).
John Kendrew with model of myoglobin in progress
Chemical structure of the peptide bond (bottom) and the three-dimensional structure of a peptide bond between an alanine and an adjacent amino acid (top/inset). The bond itself is made of the CHON elements.
Resonance structures of the peptide bond that links individual amino acids to form a protein polymer
A ribosome produces a protein using mRNA as template
The DNA sequence of a gene encodes the amino acid sequence of a protein
The crystal structure of the chaperonin, a huge protein complex. A single protein subunit is highlighted. Chaperonins assist protein folding.
Three possible representations of the three-dimensional structure of the protein triose phosphate isomerase. Left: All-atom representation colored by atom type. Middle: Simplified representation illustrating the backbone conformation, colored by secondary structure. Right: Solvent-accessible surface representation colored by residue type (acidic residues red, basic residues blue, polar residues green, nonpolar residues white).
Molecular surface of several proteins showing their comparative sizes. From left to right are: immunoglobulin G (IgG, an antibody), hemoglobin, insulin (a hormone), adenylate kinase (an enzyme), and glutamine synthetase (an enzyme).
The enzyme hexokinase is shown as a conventional ball-and-stick molecular model. To scale in the top right-hand corner are two of its substrates, ATP and glucose.
Ribbon diagram of a mouse antibody against cholera that binds a carbohydrate antigen
Proteins in different cellular compartments and structures tagged with green fluorescent protein (here, white)
Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein structure, in this case hemoglobin containing heme units

Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein.

Simplified view of the cellular metabolism

Metabolism

9 links

Set of life-sustaining chemical reactions in organisms.

Set of life-sustaining chemical reactions in organisms.

Simplified view of the cellular metabolism
Structure of adenosine triphosphate (ATP), a central intermediate in energy metabolism
Structure of a triacylglycerol lipid
This is a diagram depicting a large set of human metabolic pathways.
Glucose can exist in both a straight-chain and ring form.
Structure of the coenzyme acetyl-CoA.The transferable acetyl group is bonded to the sulfur atom at the extreme left.
The structure of iron-containing hemoglobin. The protein subunits are in red and blue, and the iron-containing heme groups in green. From.
A simplified outline of the catabolism of proteins, carbohydrates and fats
Mechanism of ATP synthase. ATP is shown in red, ADP and phosphate in pink and the rotating stalk subunit in black.
Plant cells (bounded by purple walls) filled with chloroplasts (green), which are the site of photosynthesis
Simplified version of the steroid synthesis pathway with the intermediates isopentenyl pyrophosphate (IPP), dimethylallyl pyrophosphate (DMAPP), geranyl pyrophosphate (GPP) and squalene shown. Some intermediates are omitted for clarity.
Effect of insulin on glucose uptake and metabolism. Insulin binds to its receptor (1), which in turn starts many protein activation cascades (2). These include: translocation of Glut-4 transporter to the plasma membrane and influx of glucose (3), glycogen synthesis (4), glycolysis (5) and fatty acid synthesis (6).
Evolutionary tree showing the common ancestry of organisms from all three domains of life. Bacteria are colored blue, eukaryotes red, and archaea green. Relative positions of some of the phyla included are shown around the tree.
Metabolic network of the Arabidopsis thaliana citric acid cycle. Enzymes and metabolites are shown as red squares and the interactions between them as black lines.
Aristotle's metabolism as an open flow model
Santorio Santorio in his steelyard balance, from Ars de statica medicina, first published 1614

The two nucleic acids, DNA and RNA, are polymers of nucleotides.

Adenine structure, with standard numbering of positions in red.

Adenine

12 links

Nucleobase (a purine derivative).

Nucleobase (a purine derivative).

Adenine structure, with standard numbering of positions in red.
Adenine on Crick and Watson's DNA molecular model, 1953. The picture is shown upside down compared to most modern drawings of adenine, such as those used in this article.

Adenine is one of the two purine nucleobases (the other being guanine) used in forming nucleotides of the nucleic acids.

Nucleoside

4 links

Nucleosides are glycosylamines that can be thought of as nucleotides without a phosphate group.

Phosphoric acid speciation

Phosphate

7 links

Anion, salt, functional group or ester derived from a phosphoric acid.

Anion, salt, functional group or ester derived from a phosphoric acid.

Phosphoric acid speciation
Phosphate mine near Flaming Gorge, Utah, US, 2008
Train loaded with phosphate rock, Métlaoui, Tunisia, 2012
Sea surface phosphate from the World Ocean Atlas
Relationship of phosphate to nitrate uptake for photosynthesis in various regions of the ocean. Note that nitrate is more often limiting than phosphate. See the Redfield ratio.
{{chem|H|3|PO|4}}
{{chem|[H|2|PO|4|]|-}}
{{chem|[HPO|4|]|2−}}
{{chem|[PO|4|]|3−}}

Organic phosphates are commonly found in the form of esters as nucleotides (e.g. AMP, ADP, and ATP) and in DNA and RNA.