The Large Binocular Telescope uses two curved mirrors to gather light
The phases of Venus and evolution of its apparent diameter
Schematic of a Keplerian refracting telescope. The arrow at (4) is a (notional) representation of the original image; the arrow at (5) is the inverted image at the focal plane; the arrow at (6) is the virtual image that forms in the viewer's visual sphere. The red rays produce the midpoint of the arrow; two other sets of rays (each black) produce its head and tail.
Diagram of the orbit of Venus in relationship to the Earth, observed by Galileo Galilei in 1610
Eight-inch refracting telescope at Chabot Space and Science Center
The Keck II telescope gathers light by using 36 segmented hexagonal mirrors to create a 10 m (33 ft) aperture primary mirror
These eyes represent a scaled figure of the human eye where 15 px = 1 mm, they have a pupil diameter of 7 mm. Figure A has an exit pupil diameter of 14 mm, which for astronomy purposes results in a 75% loss of light. Figure B has an exit pupil of 6.4 mm, which allows the full 100% of observable light to be perceived by the observer.
Two of the four Unit Telescopes that make up the ESO's VLT, on a remote mountaintop, 2600 metres above sea level in the Chilean Atacama Desert.
Comparison of nominal sizes of primary mirrors of some notable optical telescopes
Harlan J. Smith Telescope reflecting telescope at McDonald Observatory, Texas

Telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.

- Optical telescope

The phases of Venus result from the planet's orbit around the Sun inside the Earth's orbit giving the telescopic observer a sequence of progressive lighting similar in appearance to the Moon's phases.

- Phases of Venus
The Large Binocular Telescope uses two curved mirrors to gather light

0 related topics

Alpha