A report on Periodic table

435x435px
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
Idealized order of shell-filling (most accurate for n  ≲ 4.)
Trend in atomic radii
Graph of first ionisation energies of the elements in electronvolts (predictions used for elements 105–118)
Trend in electron affinities
Flowing liquid mercury. Its liquid state at room temperature is a result of special relativity.
A periodic table colour-coded to show some commonly used sets of similar elements. The categories and their boundaries differ somewhat between sources. Alkali metals
 Alkaline earth metals
 Lanthanides
 Actinides
 Transition metals Other metals
 Metalloids
 Other nonmetals
 Halogens
 Noble gases
Mendeleev's 1869 periodic table
Mendeleev's 1871 periodic table
Dmitri Mendeleev
Henry Moseley
Periodic table of van den Broek
Glenn T. Seaborg
One possible form of the extended periodic table to element 172, suggested by Finnish chemist Pekka Pyykkö. Deviations from the Madelung order (8s < < 6f < 7d < 8p) begin to appear at elements 139 and 140, though for the most part it continues to hold approximately.
Otto Theodor Benfey's spiral periodic table (1964)
Iron, a metal
Sulfur, a nonmetal
Arsenic, an element often called a semi-metal or metalloid

Tabular display of the chemical elements.

- Periodic table
435x435px

90 related topics with Alpha

Overall

The chemical elements ordered in the periodic table

Chemical element

42 links

Species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species.

Species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species.

The chemical elements ordered in the periodic table
Estimated distribution of dark matter and dark energy in the universe. Only the fraction of the mass and energy in the universe labeled "atoms" is composed of chemical elements.
Periodic table showing the cosmogenic origin of each element in the Big Bang, or in large or small stars. Small stars can produce certain elements up to sulfur, by the alpha process. Supernovae are needed to produce "heavy" elements (those beyond iron and nickel) rapidly by neutron buildup, in the r-process. Certain large stars slowly produce other elements heavier than iron, in the s-process; these may then be blown into space in the off-gassing of planetary nebulae
Abundances of the chemical elements in the Solar System. Hydrogen and helium are most common, from the Big Bang. The next three elements (Li, Be, B) are rare because they are poorly synthesized in the Big Bang and also in stars. The two general trends in the remaining stellar-produced elements are: (1) an alternation of abundance in elements as they have even or odd atomic numbers (the Oddo-Harkins rule), and (2) a general decrease in abundance as elements become heavier. Iron is especially common because it represents the minimum energy nuclide that can be made by fusion of helium in supernovae.
Mendeleev's 1869 periodic table: An experiment on a system of elements. Based on their atomic weights and chemical similarities.
Dmitri Mendeleev
Henry Moseley

Much of the modern understanding of elements developed from the work of Dmitri Mendeleev, a Russian chemist who published the first recognizable periodic table in 1869.

Iron, shown here as fragments and a 1 cm3 cube, is an example of a chemical element that is a metal.

Metal

13 links

Material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well.

Material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well.

Iron, shown here as fragments and a 1 cm3 cube, is an example of a chemical element that is a metal.
A metal in the form of a gravy boat made from stainless steel, an alloy largely composed of iron, carbon, and chromium
Gallium crystals
A metal rod with a hot-worked eyelet. Hot-working exploits the capacity of metal to be plastically deformed.
Samples of babbitt metal, an alloy of tin, antimony, and copper, used in bearings to reduce friction
A sculpture cast in nickel silver—an alloy of copper, nickel, and zinc that looks like silver
Rhodium, a noble metal, shown here as 1 g of powder, a 1 g pressed cylinder, and a 1 g pellet
A sample of diaspore, an aluminum oxide hydroxide mineral, α-AlO(OH)
A neodymium compound alloy magnet of composition Nd2Fe14B on a nickel-iron bracket from a computer hard drive
A pile of compacted steel scraps, ready for recycling
The Artemision Bronze showing either Poseidon or Zeus, c. 460 BCE, National Archaeological Museum, Athens. The figure is more than 2 m in height.
De re metallica, 1555
Platinum crystals
A disc of highly enriched uranium that was recovered from scrap processed at the Y-12 National Security Complex, in Oak Ridge, Tennessee
Ultrapure cerium under argon, 1.5 gm
White-hot steel pours like water from a 35-ton electric furnace, at the Allegheny Ludlum Steel Corporation, in Brackenridge, Pennsylvania.
A Ho-Mg-Zn icosahedral quasicrystal formed as a pentagonal dodecahedron, the dual of the icosahedron
Body-centered cubic crystal structure, with a 2-atom unit cell, as found in e.g. chromium, iron, and tungsten
Face-centered cubic crystal structure, with a 4-atom unit cell, as found in e.g. aluminum, copper, and gold
Hexagonal close-packed crystal structure, with a 6-atom unit cell, as found in e.g. titanium, cobalt, and zinc
Niobium crystals and a 1 cm{{sup|3}} anodized niobium cube for comparison
Molybdenum crystals and a 1 cm{{sup|3}} molybdenum cube for comparison
Tantalum single crystal, some crystalline fragments, and a 1 cm{{sup|3}} tantalum cube for comparison
Tungsten rods with evaporated crystals, partially oxidized with colorful tarnish, and a 1 cm{{sup|3}} tungsten cube for comparison
Rhenium, including a 1 cm{{sup|3}} cube
Native copper
Gold crystals
Crystalline silver
A slice of meteoric iron
alt=Three, dark broccoli shaped clumps of oxidised lead with grossly distended buds, and a cube of lead which has a dull silvery appearance.| oxidised lead
A brass weight (35 g)
A droplet of solidified molten tin
alt=A silvery molasses-like liquid being poured into a circular container with a height equivalent to a smaller coin on its edge| Mercury being
Electrum, a natural alloy of silver and gold, was often used for making coins. Shown is the Roman god Apollo, and on the obverse, a Delphi tripod (circa 310–305 BCE).
A plate made of pewter, an alloy of 85–99% tin and (usually) copper. Pewter was first used around the beginning of the Bronze Age in the Near East.
A pectoral (ornamental breastplate) made of tumbaga, an alloy of gold and copper
Arsenic, sealed in a container to prevent tarnishing
Zinc fragments and a 1 cm{{sup|3}} cube
Antimony, showing its brilliant lustre
Bismuth in crystalline form, with a very thin oxidation layer, and a 1 cm{{sup|3}} bismuth cube
Sodium
Potassium pearls under paraffin oil. Size of the largest pearl is 0.5 cm.
Strontium crystals
Aluminum chunk, 2.6 grams, {{nowrap|1=1 x 2 cm}}
A bar of titanium crystals
Scandium, including a 1 cm{{sup|3}} cube
Lutetium, including a 1 cm{{sup|3}} cube
Hafnium, in the form of a 1.7 kg bar

Around 95 of the 118 elements in the periodic table are metals (or are likely to be such).

The three naturally-occurring isotopes of hydrogen. The fact that each isotope has one proton makes them all variants of hydrogen: the identity of the isotope is given by the number of protons and neutrons. From left to right, the isotopes are protium (1H) with zero neutrons, deuterium (2H) with one neutron, and tritium (3H) with two neutrons.

Isotope

14 links

The three naturally-occurring isotopes of hydrogen. The fact that each isotope has one proton makes them all variants of hydrogen: the identity of the isotope is given by the number of protons and neutrons. From left to right, the isotopes are protium (1H) with zero neutrons, deuterium (2H) with one neutron, and tritium (3H) with two neutrons.
In the bottom right corner of J. J. Thomson's photographic plate are the separate impact marks for the two isotopes of neon: neon-20 and neon-22.
346x346px

Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei.

Electron atomic and molecular orbitals

Electron configuration

13 links

Distribution of electrons of an atom or molecule in atomic or molecular orbitals.

Distribution of electrons of an atom or molecule in atomic or molecular orbitals.

Electron atomic and molecular orbitals
A Bohr diagram of lithium
The approximate order of filling of atomic orbitals, following the arrows from 1s to 7p. (After 7p the order includes subshells outside the range of the diagram, starting with 8s.)
Electron configuration table showing blocks.

Knowledge of the electron configuration of different atoms is useful in understanding the structure of the periodic table of elements.

Blocks s, f, d, and p in the periodic table

Block (periodic table)

14 links

Blocks s, f, d, and p in the periodic table

A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in.

Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)

Atom

14 links

Smallest unit of ordinary matter that forms a chemical element.

Smallest unit of ordinary matter that forms a chemical element.

Atoms and molecules as depicted in John Dalton's A New System of Chemical Philosophy vol. 1 (1808)
The Geiger–Marsden experiment:
Left: Expected results: alpha particles passing through the plum pudding model of the atom with negligible deflection.
Right: Observed results: a small portion of the particles were deflected by the concentrated positive charge of the nucleus.
The Bohr model of the atom, with an electron making instantaneous "quantum leaps" from one orbit to another with gain or loss of energy. This model of electrons in orbits is obsolete.
The binding energy needed for a nucleon to escape the nucleus, for various isotopes
A potential well, showing, according to classical mechanics, the minimum energy V(x) needed to reach each position x. Classically, a particle with energy E is constrained to a range of positions between x1 and x2.
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown)
This diagram shows the half-life (T½) of various isotopes with Z protons and N neutrons.
These electron's energy levels (not to scale) are sufficient for ground states of atoms up to cadmium (5s2 4d10) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.
An example of absorption lines in a spectrum
Graphic illustrating the formation of a Bose–Einstein condensate
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. The surface atoms deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them (See surface reconstruction).
Periodic table showing the origin of each element. Elements from carbon up to sulfur may be made in small stars by the alpha process. Elements beyond iron are made in large stars with slow neutron capture (s-process). Elements heavier than iron may be made in neutron star mergers or supernovae after the r-process.

While experimenting with the products of radioactive decay, in 1913 radiochemist Frederick Soddy discovered that there appeared to be more than one type of atom at each position on the periodic table.

Periodic table highlighting the first row of each block. Helium (He), as a noble gas, is normally shown over neon (Ne) with the rest of the noble gases. The elements within scope of this article are inside the thick black borders. The status of oganesson (Og, element 118) is not yet known.

Nonmetal

9 links

[[File:Nonmetals in the periodic table.png|thumb|upright=0.85|

[[File:Nonmetals in the periodic table.png|thumb|upright=0.85|

Periodic table highlighting the first row of each block. Helium (He), as a noble gas, is normally shown over neon (Ne) with the rest of the noble gases. The elements within scope of this article are inside the thick black borders. The status of oganesson (Og, element 118) is not yet known.
Electronegativity values of the group 16 chalcogen elements showing a W-shaped alternation or secondary periodicity going down the group
Modern periodic table extract showing nonmetal subclasses.
<hr style="color:white;background-color:white">
† moderately strong oxidising agent
‡ strong oxidising agent
A small (about 2 cm long) piece of rapidly melting argon ice
A cluster of purple fluorite, a fluorine mineral, between two quartzes
Selenium conducts electricity around 1,000 times better when light falls on it, a property used since the mid-1870s in light-sensing applications.
A crystal of realgar, also known as "ruby sulphur" or "ruby of arsenic", an arsenic sulfide mineral As4S4
Brownish crystals of buckminsterfullerene С60, a semiconducting allotrope of carbon
Germanium occurs in some zinc-copper-lead ore bodies, in quantities sufficient to justify extraction. The pure form costs $360 per 100 grams, as at February 2022.
The Alchemist Discovering Phosphorus (1771) by Joseph Wright. The alchemist is Hennig Brand; the glow emanates from the combustion of phosphorus inside the flask.

Extract of periodic table showing how often each element is classified as a nonmetal:

Seaborg in 1964

Glenn T. Seaborg

10 links

American chemist whose involvement in the synthesis, discovery and investigation of ten transuranium elements earned him a share of the 1951 Nobel Prize in Chemistry.

American chemist whose involvement in the synthesis, discovery and investigation of ten transuranium elements earned him a share of the 1951 Nobel Prize in Chemistry.

Seaborg in 1964
Seaborg in 1950, with the ion exchanger elution column of actinide elements.
Seaborg (second from left) during Operation Plumbbob
From left to right: Chairman Seaborg, President Kennedy, Secretary McNamara on March 23, 1962. By this point, McNamara and Seaborg had been discussing the AEC's studies on the ecological effects of nuclear war and "clean" weapon alternatives. (Courtesy: National Security Archive, Original: National Archives)
President Kennedy and his Atomic Energy Commission Chairman, Glenn Seaborg
Seaborg (right) with marine biologist Dixy Lee Ray on September 17, 1968
Helen and Glenn Seaborg in Stockholm in 1951

His work in this area also led to his development of the actinide concept and the arrangement of the actinide series in the periodic table of the elements.

A neutron-induced nuclear fission event involving uranium-235

Uranium

11 links

Chemical element with the symbol U and atomic number 92.

Chemical element with the symbol U and atomic number 92.

A neutron-induced nuclear fission event involving uranium-235
Various militaries use depleted uranium as high-density penetrators.
The most visible civilian use of uranium is as the thermal power source used in nuclear power plants.
Uranium glass glowing under UV light
Uranium ceramic glaze glowing under UV light Design and developed by Dr. Sencer Sarı
Uranium glass used as lead-in seals in a vacuum capacitor
The planet Uranus, which uranium is named after
Antoine Henri Becquerel discovered the phenomenon of radioactivity by exposing a photographic plate to uranium in 1896.
Cubes and cuboids of uranium produced during the Manhattan project
The mushroom cloud over Hiroshima after the dropping of the uranium-based atomic bomb nicknamed 'Little Boy'
Four light bulbs lit with electricity generated from the first artificial electricity-producing nuclear reactor, EBR-I (1951)
U.S. and USSR/Russian nuclear weapons stockpiles, 1945–2005
Uraninite, also known as pitchblende, is the most common ore mined to extract uranium.
The evolution of Earth's radiogenic heat flow over time: contribution from 235U in red and from 238U in green
Citrobacter species can have concentrations of uranium in their cells 300 times the level of the surrounding environment.
Uranium production 2015
Monthly uranium spot price in US$ per pound. The 2007 price peak is clearly visible.
Reactions of uranium metal
Uranium in its oxidation states III, IV, V, VI
Uranium hexafluoride is the feedstock used to separate uranium-235 from natural uranium.
Cascades of gas centrifuges are used to enrich uranium ore to concentrate its fissionable isotopes.
World uranium production (mines) and demand<ref name="WNA-WUM" />
alt=A yellow sand-like rhombic mass on black background.|Yellowcake is a concentrated mixture of uranium oxides that is further refined to extract pure uranium.

It is a silvery-grey metal in the actinide series of the periodic table.

Petalite, the lithium mineral from which lithium was first isolated

Alkali metal

16 links

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).

Petalite, the lithium mineral from which lithium was first isolated
Johann Wolfgang Döbereiner was among the first to notice similarities between what are now known as the alkali metals.
Lepidolite, the rubidium mineral from which rubidium was first isolated
Dmitri Mendeleev's periodic system proposed in 1871 showing hydrogen and the alkali metals as part of his group I, along with copper, silver, and gold
Estimated abundances of the chemical elements in the Solar system. Hydrogen and helium are most common, from the Big Bang. The next three elements (lithium, beryllium, and boron) are rare because they are poorly synthesised in the Big Bang and also in stars. The two general trends in the remaining stellar-produced elements are: (1) an alternation of abundance in elements as they have even or odd atomic numbers, and (2) a general decrease in abundance, as elements become heavier. Iron is especially common because it represents the minimum energy nuclide that can be made by fusion of helium in supernovae.
Spodumene, an important lithium mineral
Effective nuclear charge on an atomic electron
Periodic trend for ionisation energy: each period begins at a minimum for the alkali metals, and ends at a maximum for the noble gases. Predicted values are used for elements beyond 104.
The variation of Pauling electronegativity (y-axis) as one descends the main groups of the periodic table from the second to the sixth period
A reaction of 3 pounds (≈ 1.4 kg) of sodium with water
Liquid NaK alloy at room temperature
Unit cell ball-and-stick model of lithium nitride. On the basis of size a tetrahedral structure would be expected, but that would be geometrically impossible: thus lithium nitride takes on this unique crystal structure.
Structure of the octahedral n-butyllithium hexamer, (C4H9Li)6. The aggregates are held together by delocalised covalent bonds between lithium and the terminal carbon of the butyl chain. There is no direct lithium–lithium bonding in any organolithium compound.
Solid phenyllithium forms monoclinic crystals can be described as consisting of dimeric Li2(C6H5)2 subunits. The lithium atoms and the ipso carbons of the phenyl rings form a planar four-membered ring. The plane of the phenyl groups are perpendicular to the plane of this Li2C2 ring. Additional strong intermolecular bonding occurs between these phenyllithium dimers and the π electrons of the phenyl groups in the adjacent dimers, resulting in an infinite polymeric ladder structure.
Reduction reactions using sodium in liquid ammonia
Empirical (Na–Cs, Mg–Ra) and predicted (Fr–Uhp, Ubn–Uhh) atomic radius of the alkali and alkaline earth metals from the third to the ninth period, measured in angstroms
Empirical (Na–Fr) and predicted (Uue) electron affinity of the alkali metals from the third to the eighth period, measured in electron volts
Empirical (Na–Fr, Mg–Ra) and predicted (Uue–Uhp, Ubn–Uhh) ionisation energy of the alkali and alkaline earth metals from the third to the ninth period, measured in electron volts
Similarly to the alkali metals, ammonia reacts with hydrochloric acid to form the salt ammonium chloride.
Very pure thallium pieces in a glass ampoule, stored under argon gas
This sample of uraninite contains about 100,000 atoms (3.3 g) of francium-223 at any given time.
FOCS 1, a caesium atomic clock in Switzerland
Lithium carbonate
A wheel type radiotherapy device which has a long collimator to focus the radiation into a narrow beam. The caesium-137 chloride radioactive source is the blue square, and gamma rays are represented by the beam emerging from the aperture. This was the radiation source involved in the Goiânia accident, containing about 93 grams of caesium-137 chloride.

Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table.