A report on Wave

Surface waves in water showing water ripples
Example of biological waves expanding over the brain cortex, an example of spreading depolarizations.
Wavelength λ, can be measured between any two corresponding points on a waveform
Animation of two waves, the green wave moves to the right while blue wave moves to the left, the net red wave amplitude at each point is the sum of the amplitudes of the individual waves. Note that f(x,t) + g(x,t) = u(x,t)
Sine, square, triangle and sawtooth waveforms.
Amplitude modulation can be achieved through f(x,t) = 1.00×sin(2π/0.10×(x−1.00×t)) and g(x,t) = 1.00×sin(2π/0.11×(x−1.00×t))only the resultant is visible to improve clarity of waveform.
Illustration of the envelope (the slowly varying red curve) of an amplitude-modulated wave. The fast varying blue curve is the carrier wave, which is being modulated.
The red square moves with the phase velocity, while the green circles propagate with the group velocity
A wave with the group and phase velocities going in different directions
Standing wave. The red dots represent the wave nodes
Light beam exhibiting reflection, refraction, transmission and dispersion when encountering a prism
Sinusoidal traveling plane wave entering a region of lower wave velocity at an angle, illustrating the decrease in wavelength and change of direction (refraction) that results.
Identical waves from two sources undergoing interference. Observed at the bottom one sees 5 positions where the waves add in phase, but in between which they are out of phase and cancel.
Schematic of light being dispersed by a prism. Click to see animation.
400px
Formation of a shock wave by a plane.
300 px
A propagating wave packet; in general, the envelope of the wave packet moves at a different speed than the constituent waves.
Animation showing the effect of a cross-polarized gravitational wave on a ring of test particles
One-dimensional standing waves; the fundamental mode and the first 5 overtones.
A two-dimensional standing wave on a disk; this is the fundamental mode.
A standing wave on a disk with two nodal lines crossing at the center; this is an overtone.

Propagating dynamic disturbance of one or more quantities.

- Wave
Surface waves in water showing water ripples

45 related topics with Alpha

Overall

400x400px

Electromagnetic radiation

7 links

400x400px
Shows the relative wavelengths of the electromagnetic waves of three different colours of light (blue, green, and red) with a distance scale in micrometers along the x-axis.
In electromagnetic radiation (such as microwaves from an antenna, shown here) the term "radiation" applies only to the parts of the electromagnetic field that radiate into infinite space and decrease in intensity by an inverse-square law of power, so that the total radiation energy that crosses through an imaginary spherical surface is the same, no matter how far away from the antenna the spherical surface is drawn. Electromagnetic radiation thus includes the far field part of the electromagnetic field around a transmitter. A part of the "near-field" close to the transmitter, forms part of the changing electromagnetic field, but does not count as electromagnetic radiation.
Electromagnetic waves can be imagined as a self-propagating transverse oscillating wave of electric and magnetic fields. This 3D animation shows a plane linearly polarized wave propagating from left to right. The electric and magnetic fields in such a wave are in-phase with each other, reaching minima and maxima together.
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation.
James Clerk Maxwell
Electromagnetic spectrum with visible light highlighted
Rough plot of Earth's atmospheric absorption and scattering (or opacity) of various wavelengths of electromagnetic radiation

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, propagating through space, carrying electromagnetic radiant energy.

Wave functions of the electron in a hydrogen atom at different energy levels. Quantum mechanics cannot predict the exact location of a particle in space, only the probability of finding it at different locations. The brighter areas represent a higher probability of finding the electron.

Quantum mechanics

6 links

Fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles.

Fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles.

Wave functions of the electron in a hydrogen atom at different energy levels. Quantum mechanics cannot predict the exact location of a particle in space, only the probability of finding it at different locations. The brighter areas represent a higher probability of finding the electron.
Fig. 1
Position space probability density of a Gaussian wave packet moving in one dimension in free space.
1-dimensional potential energy box (or infinite potential well)
Some trajectories of a harmonic oscillator (i.e. a ball attached to a spring) in classical mechanics (A-B) and quantum mechanics (C-H). In quantum mechanics, the position of the ball is represented by a wave (called the wave function), with the real part shown in blue and the imaginary part shown in red. Some of the trajectories (such as C, D, E, and F) are standing waves (or "stationary states"). Each standing-wave frequency is proportional to a possible energy level of the oscillator. This "energy quantization" does not occur in classical physics, where the oscillator can have any energy.
Schematic of a Mach–Zehnder interferometer.
Max Planck is considered the father of the quantum theory.
The 1927 Solvay Conference in Brussels was the fifth world physics conference.

Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization), objects have characteristics of both particles and waves (wave–particle duality), and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle).

The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown.

Wavelength

7 links

Spatial period of a periodic wave—the distance over which the wave's shape repeats.

Spatial period of a periodic wave—the distance over which the wave's shape repeats.

The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown.
Sinusoidal standing waves in a box that constrains the end points to be nodes will have an integer number of half wavelengths fitting in the box.
A standing wave (black) depicted as the sum of two propagating waves traveling in opposite directions (red and blue)
Wavelength is decreased in a medium with slower propagation.
Refraction: upon entering a medium where its speed is lower, the wave changes direction.
Separation of colors by a prism (click for animation)
Various local wavelengths on a crest-to-crest basis in an ocean wave approaching shore
A sinusoidal wave travelling in a nonuniform medium, with loss
A wave on a line of atoms can be interpreted according to a variety of wavelengths.
Near-periodic waves over shallow water
Wavelength of a periodic but non-sinusoidal waveform.
A propagating wave packet
Pattern of light intensity on a screen for light passing through two slits. The labels on the right refer to the difference of the path lengths from the two slits, which are idealized here as point sources.
Diffraction pattern of a double slit has a single-slit envelope.
Relationship between wavelength, angular wavelength, and other wave properties.

Sinusoids are the simplest traveling wave solutions, and more complex solutions can be built up by superposition.

A pendulum making 25 complete oscillations in 60 s, a frequency of 0.41 Hertz

Frequency

5 links

Number of occurrences of a repeating event per unit of time.

Number of occurrences of a repeating event per unit of time.

A pendulum making 25 complete oscillations in 60 s, a frequency of 0.41 Hertz
A pendulum with a period of 2.8 s and a frequency of 0.36 Hz
Diagram of the relationship between the different types of frequency and other wave properties.
Modern frequency counter
Complete spectrum of electromagnetic radiation with the visible portion highlighted
The sound wave spectrum, with rough guide of some applications

For cyclical phenomena such as oscillations, waves, or for examples of simple harmonic motion, the term frequency is defined as the number of cycles or vibrations per unit of time.

Animation of a standing wave ( red ) created by the superposition of a left traveling ( blue ) and right traveling ( green ) wave

Standing wave

4 links

Animation of a standing wave ( red ) created by the superposition of a left traveling ( blue ) and right traveling ( green ) wave
Longitudinal standing wave
Transient analysis of a damped traveling wave reflecting at a boundary
Standing wave in stationary medium. The red dots represent the wave nodes.
A standing wave (black) depicted as the sum of two propagating waves traveling in opposite directions (red and blue).
Electric force vector (E) and magnetic force vector (H) of a standing wave.
Standing waves in a string – the fundamental mode and the first 5 harmonics.
A standing wave on a circular membrane, an example of standing waves in two dimensions. This is the fundamental mode.
A higher harmonic standing wave on a disk with two nodal lines crossing at the center.

In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space.

Plane pressure pulse wave

Longitudinal wave

3 links

Plane pressure pulse wave

Longitudinal waves are waves in which the vibration of the medium is parallel ("along") to the direction the wave travels and displacement of the medium is in the same (or opposite) direction of the wave propagation.

Superposition of almost plane waves (diagonal lines) from a distant source and waves from the wake of the ducks. Linearity holds only approximately in water and only for waves with small amplitudes relative to their wavelengths.

Superposition principle

3 links

Sum of the responses that would have been caused by each stimulus individually.

Sum of the responses that would have been caused by each stimulus individually.

Superposition of almost plane waves (diagonal lines) from a distant source and waves from the wake of the ducks. Linearity holds only approximately in water and only for waves with small amplitudes relative to their wavelengths.
Rolling motion as superposition of two motions. The rolling motion of the wheel can be described as a combination of two separate motions: translation without rotation, and rotation without translation.
Two waves traveling in opposite directions across the same medium combine linearly. In this animation, both waves have the same wavelength and the sum of amplitudes results in a standing wave.
two waves permeate without influencing each other
green wave traverse to the right while blue wave traverse left, the net red wave amplitude at each point is the sum of the amplitudes of the individual waves.

Fourier analysis is particularly common for waves.

The interference of two waves. When in phase, the two lower waves create constructive interference (left), resulting in a wave of greater amplitude. When 180° out of phase, they create destructive interference (right).

Wave interference

4 links

The interference of two waves. When in phase, the two lower waves create constructive interference (left), resulting in a wave of greater amplitude. When 180° out of phase, they create destructive interference (right).
Interference of right traveling (green) and left traveling (blue) waves in Two-dimensional space, resulting in final (red) wave
Interference of waves from two point sources.
A magnified image of a coloured interference pattern in a soap film. The "black holes" are areas of almost total destructive interference (antiphase).
Geometrical arrangement for two plane wave interference
Interference fringes in overlapping plane waves
Optical interference between two point sources that have different wavelengths and separations of sources.
Creation of interference fringes by an optical flat on a reflective surface. Light rays from a monochromatic source pass through the glass and reflect off both the bottom surface of the flat and the supporting surface.  The tiny gap between the surfaces means the two reflected rays have different path lengths. In addition the ray reflected from the bottom plate undergoes a 180° phase reversal.  As a result, at locations (a) where the path difference is an odd multiple of λ/2, the waves reinforce.   At locations (b) where the path difference is an even multiple of λ/2 the waves cancel.  Since the gap between the surfaces varies slightly in width at different points, a series of alternating bright and dark bands, interference fringes, are seen.
White light interference in a soap bubble. The iridescence is due to thin-film interference.
The Very Large Array, an interferometric array formed from many smaller telescopes, like many larger radio telescopes.

In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude.

Body waves and surface waves

Seismic wave

2 links

Body waves and surface waves
p-wave and s-wave from seismograph
Velocity of seismic waves in Earth versus depth. The negligible S-wave velocity in the outer core occurs because it is liquid, while in the solid inner core the S-wave velocity is non-zero
The sense of motion for toroidal 0T1 oscillation for two moments of time.
The scheme of motion for spheroidal 0S2 oscillation.Dashed lines give nodal (zero) lines. Arrows give the sense of motion.
Earthquake wave paths
The hypocenter/epicenter of an earthquake is calculated by using the seismic data of that earthquake from at least three different locations. The hypocenter/epicenter is found at the intersection of three circles centered on three observation stations, here shown in Japan, Australia and the United States. The radius of each circle is calculated from the difference in the arrival times of P- and S-waves at the corresponding station.
P- and S-waves sharing with the propagation

Seismic waves are waves of acoustic energy that travel through the Earth.

Ripple in water is a surface wave.

Mechanical wave

2 links

Ripple in water is a surface wave.

In physics, a mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium.